I am using Stata v15.
My specific question is that I am not sure how to interpret the interaction in my regression when the factor loadings are positive and negative.
The analysis is outlined below.
First, I standardized the variables used in the PCA as follows:
Second, I conduct the PCA for the baseline variables as follows:
The resulting output is:
Then I used the predicted values in my regression as follows:
(Note:I'm only using the first two factors and not the third, because they explain the majority of the variability)
and the resulting output is:
Returning to my specific question, how do I interpret the coefficient for crossover#c.factor1_2003 when some of the factor loadings were negative? According to the literature on factor score indetermination the signs are arbitrary, but I'm not sure how this translates to the interpretation of the coefficient. Some researchers recode the factors to avoid negative values, but my data isn't on a likert scale. Is it correct to say: Although insignificant results indicate that aid levels are lower as need increased?
Thanks in advance for your time.
My specific question is that I am not sure how to interpret the interaction in my regression when the factor loadings are positive and negative.
The analysis is outlined below.
First, I standardized the variables used in the PCA as follows:
Code:
*Standardize variables foreach v of var u5m_2003 u5m_2008 u5m_2013 neonatal_2003 neonatal_2008 neonatal_2013 u5dia_2003 u5dia_2008 u5dia_2013 u5ari_2003 u5ari_2008 u5ari_2013 u5fever_2003 u5fever_2008 u5fever_2013 u5ft_2003 u5ft_2008 u5ft_2013 vaccp_2003 vaccp_2008 vaccp_2013 sba_2003 sba_2008 sba_2013 anc_2003 anc_2008 anc_2013 postnatal_2003 postnatal_2008 postnatal_2013 u5net_2003 u5net_2008 u5net_2013{ qui su `v' g double z_`v' = (`v' - r(mean))/r(sd) }
Code:
ctor determinants (2013) factor z_u5m_2003 z_neonatal_2003 z_u5dia_2003 z_u5ari_2003 z_u5fever_2003 z_u5ft_2003 z_vaccp_2003 z_sba_2003 z_anc_2003 z_postnatal_2003 z_u5net_2003,pcf rotate predict factor1_2003 factor2_2003 factor3_2003
Code:
factor z_u5m_2003 z_neonatal_2003 z_u5dia_2003 z_u5ari_2003 z_u5fever_2003 z_u5ft_2003 z_vaccp_2003 z_sba_2003 z_anc_2003 z_postnatal_2003 z_u5net_2003,pcf (obs=80) Factor analysis/correlation Number of obs = 80 Method: principal-component factors Retained factors = 3 Rotation: (unrotated) Number of params = 30 Beware: solution is a Heywood case (i.e., invalid or boundary values of uniqueness) -------------------------------------------------------------------------- Factor | Eigenvalue Difference Proportion Cumulative -------------+------------------------------------------------------------ Factor1 | 5.93522 2.32212 0.5396 0.5396 Factor2 | 3.61309 2.16140 0.3285 0.8680 Factor3 | 1.45169 1.45169 0.1320 1.0000 Factor4 | 0.00000 0.00000 0.0000 1.0000 Factor5 | 0.00000 0.00000 0.0000 1.0000 Factor6 | 0.00000 0.00000 0.0000 1.0000 Factor7 | -0.00000 0.00000 -0.0000 1.0000 Factor8 | -0.00000 0.00000 -0.0000 1.0000 Factor9 | -0.00000 0.00000 -0.0000 1.0000 Factor10 | -0.00000 0.00000 -0.0000 1.0000 Factor11 | -0.00000 . -0.0000 1.0000 -------------------------------------------------------------------------- LR test: independent vs. saturated: chi2(55) = . Prob>chi2 = . Factor loadings (pattern matrix) and unique variances ----------------------------------------------------------- Variable | Factor1 Factor2 Factor3 | Uniqueness -------------+------------------------------+-------------- z_u5m_2003 | 0.9645 0.1389 -0.2248 | -0.0000 z_neona~2003 | -0.2173 0.9517 0.2169 | 0.0000 z_u5dia_2003 | 0.9914 0.0754 0.1068 | -0.0000 z_u5ari_2003 | 0.6885 0.2352 0.6860 | 0.0000 z_u5fev~2003 | 0.9777 0.1643 -0.1305 | -0.0000 z_u5ft_2003 | -0.2040 -0.8579 0.4716 | 0.0000 z_vaccp_2003 | -0.8972 0.1648 -0.4096 | 0.0000 z_sba_2003 | -0.9178 0.3289 0.2225 | 0.0000 z_anc_2003 | -0.9006 0.1924 0.3898 | 0.0000 z_postn~2003 | 0.2018 0.9076 0.3680 | 0.0000 z_u5net_2003 | 0.0641 -0.9316 0.3577 | -0.0000 ----------------------------------------------------------- . rotate Factor analysis/correlation Number of obs = 80 Method: principal-component factors Retained factors = 3 Rotation: orthogonal varimax (Kaiser off) Number of params = 30 Beware: solution is a Heywood case (i.e., invalid or boundary values of uniqueness) -------------------------------------------------------------------------- Factor | Variance Difference Proportion Cumulative -------------+------------------------------------------------------------ Factor1 | 5.21423 1.71609 0.4740 0.4740 Factor2 | 3.49815 1.21053 0.3180 0.7920 Factor3 | 2.28762 . 0.2080 1.0000 -------------------------------------------------------------------------- LR test: independent vs. saturated: chi2(55) = . Prob>chi2 = . Rotated factor loadings (pattern matrix) and unique variances ----------------------------------------------------------- Variable | Factor1 Factor2 Factor3 | Uniqueness -------------+------------------------------+-------------- z_u5m_2003 | -0.9571 0.1870 0.2212 | -0.0000 z_neona~2003 | 0.3735 0.8760 0.3051 | 0.0000 z_u5dia_2003 | -0.8567 0.0487 0.5136 | -0.0000 z_u5ari_2003 | -0.3359 0.0707 0.9392 | 0.0000 z_u5fev~2003 | -0.9296 0.1900 0.3158 | -0.0000 z_u5ft_2003 | 0.2925 -0.9435 0.1557 | 0.0000 z_vaccp_2003 | 0.6734 0.2548 -0.6940 | 0.0000 z_sba_2003 | 0.9574 0.2687 -0.1057 | 0.0000 z_anc_2003 | 0.9950 0.0973 0.0212 | 0.0000 z_postn~2003 | 0.0461 0.7983 0.6005 | 0.0000 z_u5net_2003 | -0.0044 -0.9890 0.1478 | -0.0000 ----------------------------------------------------------- Factor rotation matrix ----------------------------------------- | Factor1 Factor2 Factor3 -------------+--------------------------- Factor1 | -0.9138 -0.0000 0.4062 Factor2 | 0.0937 0.9730 0.2107 Factor3 | 0.3953 -0.2306 0.8891 ----------------------------------------- . predict factor1_2003 factor2_2003 factor3_2003 (regression scoring assumed)
(Note:I'm only using the first two factors and not the third, because they explain the majority of the variability)
Code:
reg WB_commit i.year crossover##(c.factor1_2003 c.factor2_2003), cluster(n_region)
Code:
Linear regression Number of obs = 80 F(2, 3) = . Prob > F = . R-squared = 0.7753 Root MSE = 1.3e+06 (Std. Err. adjusted for 4 clusters in n_region) ------------------------------------------------------------------------------------------ | Robust WB_commit | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------------------+---------------------------------------------------------------- year | 1996 | 13933.84 8150.392 1.71 0.186 -12004.35 39872.02 1997 | -9955.19 11737.44 -0.85 0.459 -47308.95 27398.57 1998 | -7415.08 12926.08 -0.57 0.606 -48551.65 33721.49 1999 | -9955.19 11737.44 -0.85 0.459 -47308.95 27398.57 2000 | 480178.9 136738.8 3.51 0.039 45015.2 915342.7 2001 | 993111.9 176355 5.63 0.011 431871.6 1554352 2002 | 2166282 629478.6 3.44 0.041 163000.4 4169564 2003 | 954529.3 275346.2 3.47 0.040 78254.79 1830804 2004 | -7535.359 11754.28 -0.64 0.567 -44942.72 29872 2005 | 1625435 471472.5 3.45 0.041 124999.3 3125871 2006 | 1645258 826210.1 1.99 0.141 -984111.2 4274627 2007 | 470547.2 52232.61 9.01 0.003 304319.7 636774.7 2008 | 3983686 580806.6 6.86 0.006 2135301 5832072 2009 | 6977445 2099152 3.32 0.045 297007.4 1.37e+07 2010 | -9955.193 328250.6 -0.03 0.978 -1054595 1034685 2011 | 1663598 277110.5 6.00 0.009 781708.6 2545487 2012 | 5194180 2057367 2.52 0.086 -1353281 1.17e+07 2013 | -5587.206 331510.7 -0.02 0.988 -1060602 1049428 2014 | -1058.305 330192 -0.00 0.998 -1051877 1049760 | 1.crossover | 0 (omitted) factor1_2003 | -229838.4 62332.2 -3.69 0.035 -428207.3 -31469.53 factor2_2003 | 963.0723 57286.32 0.02 0.988 -181347.6 183273.7 | crossover#c.factor1_2003 | 1 | -467120.3 439140.7 -1.06 0.365 -1864662 930421.5 | crossover#c.factor2_2003 | 1 | 64664.85 403591.6 0.16 0.883 -1219744 1349074 | _cons | 9955.188 150387.5 0.07 0.951 -468645.1 488555.5 ------------------------------------------------------------------------------------------
Thanks in advance for your time.
Comment