Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • F Test of Tobit model Coefficients _Testing Same Model in Different Data Sets

    Hi all,
    I am running Tobit regressions which require the same model to be run for multiple datasets.
    I need to do an F test to see if the differences in coefficients in different datasets are statistically significant. I have no clue about how to implement this in Stata.
    Can anyone help me with it? Thanks!

  • #2
    Are the multiple data sets mutually exclusive? That is, could you imagine the data sets as all being subsets of a single combined data set with an additional variable designated the one and only subset any given observation came from?

    If so, you can go about this in two ways. You can run the -tobit- models in each data set, and following each -tobit- command use -estimates store- to retain the results in memory. Once they are all done, you can use -suest- to combine them. Then you can run -test- commands following -suest- to do contrasts of specific coefficients, or sets of coefficients, or all the coefficients.

    Read -help estimates store- and -help suest-.

    An alternative approach is to actually combine all the data sets into a single large data set with a variable indicating which one each observation comes from. (-help append-) Then run the -tobit- model on the combined data set, but add to it interactions between that data set indicator variable and all the other variables in your model. Then you can test the estimates for the interaction terms individually, in subsets, or all together. The simplest way to add the interaction terms is with factor variable notation. -help fvvarlist-.

    There is no particular reason to prefer either of approaches over the other. Well, the combined data set and interaction terms approach generalizes to all possible estimating commands, whereas -suest- cannot be used with some estimators, so perhaps the combined data set and interaction approach is more worth learning for future applications.

    So, you've asked a fairly broad question that has a lengthy answer. You now have a substantial reading list to go through to learn the commands that will help you. If you get stuck trying to implement this, do post back showing the exact code you are running, the exact response(s) you are getting from Stata, including any messages. Wrap the code and output in code delimiters to assure that things align readably. (If you are not familiar with code delimiters, read Forum FAQ #12 for instructions.) And also show an example of your data using the -dataex- command. If you are running version 15.1 or a fully updated version 14.2, it is already part of your official Stata installation. If not, run -ssc install dataex- to get it. Either way, run -help dataex- to read the simple instructions for using it. -dataex- will save you time; it is easier and quicker than typing out tables. It includes complete information about aspects of the data that are often critical to answering your question but cannot be seen from tabular displays or screenshots. It also makes it possible for those who want to help you to create a faithful representation of your example to try out their code, which in turn makes it more likely that their answer will actually work in your data.

    When asking for help with code, always show example data. When showing example data, always use -dataex-.

    Comment


    • #3
      Thank you very much for your answer, Clyde.
      I am gonna divide the full dataset into two subsets based on whether the variable “norm” is above the average or not. If it is above the average, I call it “high_norm”. If it is below the average, I call it “low_norm”.
      Then I run the tobit model for these two subsets. So I can get two coefficients of the variable “operation”, one from the “high_norm”, and the other from the “low_norm”. My goal is to compare the coefficients of the variable “operation” from these two subsets. So I need to take an F test. I am stuck in the last step.
      Here is the code. I am not sure if I put the sample data in a correct way using -dataex-. Please let me knodoesn'tt doesnt work.
      Really appreciate your help!

      . dataex operation size cost PPP resource norm risk in 1/30

      Code:
      * Example generated by -dataex-. To install: ssc install dataex
      clear
      input double(operation size cost PPP resource norm risk)
      18.399999618530273  -.3778327703475952  -.9071999192237854   .08188223838806152  -.1113569363951683    -.6199849247932434    -.624012291431427
      18.399999618530273 -.40205010771751404  -.9117006063461304   -.3542981743812561    .223642498254776   -.47683894634246826    1.267051339149475
      11.600000381469727 -.04139556363224983  -.9156386256217957 -.024021748453378677   .8689360618591309    -.6254710555076599    .8203957080841064
      11.800000190734863  -.1249365359544754  -.9071999192237854   .08188223838806152    .657260537147522    -.5510783195495605   1.2482249736785889
      11.199999809265137  -.2852507531642914  -.8400837779045105    .5147495865821838  .21688228845596313   -.14836332201957703     2.85198974609375
      12.199999809265137  -.3442705571651459  -.8327139019966125    1.031813383102417  .23961099982261658   .055991631001234055    3.942247152328491
                      11 -.41052982211112976  -.9156386256217957 -.024021748453378677   .2753913700580597    -.8822530508041382   1.9798166751861572
      12.600000381469727  -.4124920070171356  -.9071999192237854   .08188223838806152 -.06872667372226715   -.47910258173942566     -.53339684009552
      12.800000190734863  -.4138182997703552  -.9117006063461304   -.3542981743812561 -.24208040535449982    -.4821726679801941  -.39179888367652893
      12.800000190734863 -.42479583621025085  -.8238251209259033   .07329901307821274  -.3674023151397705  .0034701505210250616  -.12726706266403198
      12.800000190734863 -.42418625950813293  -.8400837779045105    .5147495865821838  -.6881850361824036   -.33259984850883484  -.06733386963605881
      12.800000190734863 -.42827674746513367  -.8327139019966125    1.031813383102417 -.26216331124305725    -.3594644367694855 -.016053592786192894
                       6 -.36937758326530457  1.2356785535812378 -.024021748453378677  -.8310554623603821     -.824479341506958  -1.0755586624145508
                       6  -.3631949722766876  1.4623993635177612   .08188223838806152  -.9515716433525085   -1.0078279972076416   -1.021239161491394
                       6  -.3718755543231964    1.36282217502594   -.3542981743812561  -.9823076128959656    -.6889771819114685   -.7112607955932617
                       6 -.35925114154815674   1.254806399345398   .07329901307821274  -.9679455757141113     .3041660189628601   -.4853729009628296
       6.199999809265137  -.3353084921836853   1.456210970878601    .5147495865821838 -1.0663305521011353    .06059702858328819  -.20103222131729126
       7.800000190734863  -.3370598256587982  -.8965108394622803    1.031813383102417 -1.0470980405807495     .6091872453689575  -.11621597409248352
                       5  -.4523542821407318 -1.0934149026870728   -.3542981743812561   -.412740021944046     .5452356338500977    -.777881383895874
                       5  -.4565393626689911 -1.0765373706817627   .07329901307821274 -.20467467606067657      .677656888961792   -.5777859091758728
       4.800000190734863  -.4576379954814911 -1.0484082698822021    .5147495865821838  -.2314063310623169     .9116454124450684  -.43494001030921936
       4.599999904632568  -.4592602849006653  -1.025904893875122    1.031813383102417 .011350096203386784    .17719988524913788   -.5323051810264587
      14.800000190734863  2.9494690895080566  -.8327139019966125    1.031813383102417 -1.3621976375579834    .37993356585502625   1.4040451049804688
       7.599999904632568 -.13403452932834625  1.2356785535812378 -.024021748453378677 -.23062898218631744   -.23050619661808014   -.1370173543691635
       8.800000190734863  -.2086687833070755  1.4623993635177612   .08188223838806152 .041160330176353455   -.09920760989189148   .22145545482635498
       9.800000190734863  -.2588375210762024    1.36282217502594   -.3542981743812561   .5523819327354431    -.1437295824289322   .21106936037540436
      11.600000381469727 -.11891254782676697  1.0376492738723755   .07329901307821274 -.30747005343437195 -.0019190004095435143   .12498844414949417
      12.399999618530273 -.17159172892570496  1.2204887866973877    .5147495865821838  -.6979902982711792   -.17532913386821747  -.16300901770591736
      13.199999809265137 -.24584807455539703  .04283396154642105    1.031813383102417  -.3528188169002533   -.11198530346155167   .16346964240074158
      21.600000381469727  -.3988196849822998  -.9156386256217957 -.024021748453378677  1.1261144876480103    -.7285856604576111  -1.1565927267074585
      end


      Code:
      . sum norm, detail
      
                                  norm
      -------------------------------------------------------------
            Percentiles      Smallest
       1%    -2.610545      -2.888673
       5%    -1.494263      -2.757503
      10%    -.9065234      -2.610545       Obs                 299
      25%    -.5500375      -2.557424       Sum of Wgt.         299
      
      50%    -.1043692                      Mean           .0054955
                              Largest       Std. Dev.      .9719611
      75%     .4200296       2.557417
      90%     1.420565       2.651641       Variance       .9447083
      95%     2.170326       2.660218       Skewness       .5614073
      99%     2.651641       2.706151       Kurtosis       4.073483
      
      . 
      . egen normmean=mean(norm)
      
      . 
      . gen high_norm=0 if norm<normmean
      (121 missing values generated)
      
      . 
      . replace high_norm=1 if missing(high_norm)
      (121 real changes made)
      
      . 
      . 
      . 
      . *test low_norm sample*
      
      . 
      . tobit risk size PPP resource cost operation, ll(0), if high_norm==0
      
      Refining starting values:
      
      Grid node 0:   log likelihood = -237.44543
      
      Fitting full model:
      
      Iteration 0:   log likelihood = -237.44543  
      Iteration 1:   log likelihood = -181.37746  
      Iteration 2:   log likelihood = -166.77426  
      Iteration 3:   log likelihood = -163.53825  
      Iteration 4:   log likelihood =  -163.4372  
      Iteration 5:   log likelihood = -163.43661  
      Iteration 6:   log likelihood = -163.43661  
      
      Tobit regression                                Number of obs     =        178
                                                         Uncensored     =         60
      Limits: lower = 0                                  Left-censored  =        118
              upper = +inf                               Right-censored =          0
      
                                                      LR chi2(5)        =      11.37
                                                      Prob > chi2       =     0.0445
      Log likelihood = -163.43661                     Pseudo R2         =     0.0336
      
      ------------------------------------------------------------------------------
              risk |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
              size |  -.0026304   .1157768    -0.02   0.982    -.2311473    .2258865
               PPP |   .5396431   .2640573     2.04   0.043     .0184545    1.060832
          resource |   .0163501   .1661216     0.10   0.922    -.3115361    .3442362
              cost |   .0887001   .1340803     0.66   0.509    -.1759437    .3533439
         operation |  -.0405574   .0199937    -2.03   0.044    -.0800203   -.0010945
             _cons |  -.1874862   .2580408    -0.73   0.468    -.6967996    .3218273
      -------------+----------------------------------------------------------------
        var(e.risk)|    1.95699   .4083789                      1.296317    2.954379
      ------------------------------------------------------------------------------
      
      . 
      . estimates store low_norm
      
      . 
      . 
      . 
      . *test high_norm sample*
      
      . 
      . tobit risk size PPP resource cost operation, ll(0), if high_norm==1
      
      Refining starting values:
      
      Grid node 0:   log likelihood = -156.85432
      
      Fitting full model:
      
      Iteration 0:   log likelihood = -156.85432  
      Iteration 1:   log likelihood = -95.555607  
      Iteration 2:   log likelihood = -76.075133  
      Iteration 3:   log likelihood = -68.898554  
      Iteration 4:   log likelihood = -67.660773  
      Iteration 5:   log likelihood = -67.628196  
      Iteration 6:   log likelihood = -67.628119  
      Iteration 7:   log likelihood = -67.628119  
      
      Tobit regression                                Number of obs     =        121
                                                         Uncensored     =         22
      Limits: lower = 0                                  Left-censored  =         99
              upper = +inf                               Right-censored =          0
      
                                                      LR chi2(5)        =      24.15
                                                      Prob > chi2       =     0.0002
      Log likelihood = -67.628119                     Pseudo R2         =     0.1515
      
      ------------------------------------------------------------------------------
              risk |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
              size |  -.5782509   .2917932    -1.98   0.050    -1.156184   -.0003177
               PPP |    1.24688   .5128526     2.43   0.017     .2311106    2.262649
          resource |    -.99764   .4593527    -2.17   0.032    -1.907446    -.087834
              cost |  -.5675052   .3072405    -1.85   0.067    -1.176034    .0410234
         operation |   -.023021   .0363105    -0.63   0.527    -.0949385    .0488965
             _cons |  -2.064819   .6955159    -2.97   0.004    -3.442376   -.6872625
      -------------+----------------------------------------------------------------
        var(e.risk)|   2.629274   .9171524                       1.31761    5.246685
      ------------------------------------------------------------------------------
      
      . 
      . estimates store high_norm
      
      . 
      . 
      . 
      . suest low_norm high_norm
      
      Simultaneous results for low_norm, high_norm
      
                                                      Number of obs     =        299
      
      ------------------------------------------------------------------------------
                   |               Robust
                   |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      low_norm_r~k |
              size |  -.0026304   .0932446    -0.03   0.977    -.1853864    .1801256
               PPP |   .5396431   .2183594     2.47   0.013     .1116666    .9676197
          resource |   .0163501   .1612246     0.10   0.919    -.2996442    .3323444
              cost |   .0887001    .149196     0.59   0.552    -.2037188    .3811189
         operation |  -.0405574   .0172625    -2.35   0.019    -.0743912   -.0067236
             _cons |  -.1874862   .2351246    -0.80   0.425    -.6483218    .2733495
      -------------+----------------------------------------------------------------
      /low_norm    |
        var(e.risk)|    1.95699   .3952685                       1.31724    2.907451
      -------------+----------------------------------------------------------------
      high_norm_~k |
              size |  -.5782509   .3228464    -1.79   0.073    -1.211018    .0545165
               PPP |    1.24688   .4877586     2.56   0.011     .2908905    2.202869
          resource |    -.99764   .3374877    -2.96   0.003    -1.659104   -.3361763
              cost |  -.5675052   .2345439    -2.42   0.016    -1.027203   -.1078076
         operation |   -.023021   .0316937    -0.73   0.468    -.0851395    .0390975
             _cons |  -2.064819   .6467878    -3.19   0.001      -3.3325   -.7971385
      -------------+----------------------------------------------------------------
      /high_norm   |
        var(e.risk)|   2.629274   1.120319                      1.140627    6.060772
      ------------------------------------------------------------------------------
      
      . 
      . test low_norm_operation high_norm_operation
      low_norm_operation not found
      r(111);

      Comment


      • #4
        Your -dataex- was perfect. Thank you. Actually, your code is quite good until your very last line. This will work:

        Code:
        * Example generated by -dataex-. To install: ssc install dataex
        clear
        input double(operation size cost PPP resource norm risk)
        18.399999618530273  -.3778327703475952  -.9071999192237854   .08188223838806152  -.1113569363951683    -.6199849247932434    -.624012291431427
        18.399999618530273 -.40205010771751404  -.9117006063461304   -.3542981743812561    .223642498254776   -.47683894634246826    1.267051339149475
        11.600000381469727 -.04139556363224983  -.9156386256217957 -.024021748453378677   .8689360618591309    -.6254710555076599    .8203957080841064
        11.800000190734863  -.1249365359544754  -.9071999192237854   .08188223838806152    .657260537147522    -.5510783195495605   1.2482249736785889
        11.199999809265137  -.2852507531642914  -.8400837779045105    .5147495865821838  .21688228845596313   -.14836332201957703     2.85198974609375
        12.199999809265137  -.3442705571651459  -.8327139019966125    1.031813383102417  .23961099982261658   .055991631001234055    3.942247152328491
                        11 -.41052982211112976  -.9156386256217957 -.024021748453378677   .2753913700580597    -.8822530508041382   1.9798166751861572
        12.600000381469727  -.4124920070171356  -.9071999192237854   .08188223838806152 -.06872667372226715   -.47910258173942566     -.53339684009552
        12.800000190734863  -.4138182997703552  -.9117006063461304   -.3542981743812561 -.24208040535449982    -.4821726679801941  -.39179888367652893
        12.800000190734863 -.42479583621025085  -.8238251209259033   .07329901307821274  -.3674023151397705  .0034701505210250616  -.12726706266403198
        12.800000190734863 -.42418625950813293  -.8400837779045105    .5147495865821838  -.6881850361824036   -.33259984850883484  -.06733386963605881
        12.800000190734863 -.42827674746513367  -.8327139019966125    1.031813383102417 -.26216331124305725    -.3594644367694855 -.016053592786192894
                         6 -.36937758326530457  1.2356785535812378 -.024021748453378677  -.8310554623603821     -.824479341506958  -1.0755586624145508
                         6  -.3631949722766876  1.4623993635177612   .08188223838806152  -.9515716433525085   -1.0078279972076416   -1.021239161491394
                         6  -.3718755543231964    1.36282217502594   -.3542981743812561  -.9823076128959656    -.6889771819114685   -.7112607955932617
                         6 -.35925114154815674   1.254806399345398   .07329901307821274  -.9679455757141113     .3041660189628601   -.4853729009628296
         6.199999809265137  -.3353084921836853   1.456210970878601    .5147495865821838 -1.0663305521011353    .06059702858328819  -.20103222131729126
         7.800000190734863  -.3370598256587982  -.8965108394622803    1.031813383102417 -1.0470980405807495     .6091872453689575  -.11621597409248352
                         5  -.4523542821407318 -1.0934149026870728   -.3542981743812561   -.412740021944046     .5452356338500977    -.777881383895874
                         5  -.4565393626689911 -1.0765373706817627   .07329901307821274 -.20467467606067657      .677656888961792   -.5777859091758728
         4.800000190734863  -.4576379954814911 -1.0484082698822021    .5147495865821838  -.2314063310623169     .9116454124450684  -.43494001030921936
         4.599999904632568  -.4592602849006653  -1.025904893875122    1.031813383102417 .011350096203386784    .17719988524913788   -.5323051810264587
        14.800000190734863  2.9494690895080566  -.8327139019966125    1.031813383102417 -1.3621976375579834    .37993356585502625   1.4040451049804688
         7.599999904632568 -.13403452932834625  1.2356785535812378 -.024021748453378677 -.23062898218631744   -.23050619661808014   -.1370173543691635
         8.800000190734863  -.2086687833070755  1.4623993635177612   .08188223838806152 .041160330176353455   -.09920760989189148   .22145545482635498
         9.800000190734863  -.2588375210762024    1.36282217502594   -.3542981743812561   .5523819327354431    -.1437295824289322   .21106936037540436
        11.600000381469727 -.11891254782676697  1.0376492738723755   .07329901307821274 -.30747005343437195 -.0019190004095435143   .12498844414949417
        12.399999618530273 -.17159172892570496  1.2204887866973877    .5147495865821838  -.6979902982711792   -.17532913386821747  -.16300901770591736
        13.199999809265137 -.24584807455539703  .04283396154642105    1.031813383102417  -.3528188169002533   -.11198530346155167   .16346964240074158
        21.600000381469727  -.3988196849822998  -.9156386256217957 -.024021748453378677  1.1261144876480103    -.7285856604576111  -1.1565927267074585
        end
        
        // egen normmean=mean(norm)
        // gen high_norm=0 if norm<normmean
        // replace high_norm=1 if missing(high_norm)
        
        //    THE ABOVE CODE WORKS, BUT THIS IS SHORTER, CLEARER
        //    AND ALSO FASTER IN A LARGE DATA SET
        summ norm, meanonly
        gen high_norm = norm >= r(mean)
        
        *test low_norm sample*
        
        
        tobit risk size PPP resource cost operation, ll(0), if high_norm==0
        
        estimates store low_norm
        
        
        *test high_norm sample*
        
        
        tobit risk size PPP resource cost operation, ll(0), if high_norm==1
        
        estimates store high_norm
        
        suest low_norm high_norm
        
        test _b[high_norm_risk:operation] = _b[low_norm_risk:operation]
        Notes;

        1. I slightly streamlined the code for creating the high_norm variable. What you had is fine, but this is shorter, clearer, and, if run on a large data set, faster.

        2. You may be wondering how I knew what to write for the -test- command. Here's a general tip. If you want to use -test- or -lincom- after a Stata estimation command, you have to know exactly how that command has named the coefficients you want to work with. And, unfortunately, different commands, reflecting the complexity of the models they estimate, do it somewhat differently. The way to know is, after running the estimation command (in this case, -suest-), rerun it with the -coefl- option specified. When you do that, the estimation itself is not repeated. Rather the results are "replayed," and instead of the standard errors and test statistics and CIs, Stata shows you the names it has assigned to the different coefficients. You can then use those (I recommend doing it by copying and pasting into your do-file) in -test- or -lincom-. Here's what -suest, coefl- produces when run after the commands you provided in #3, other than the -test- command, using your -dataex- example as input:

        Code:
        . suest, coefl
        
        Simultaneous results for low_norm, high_norm
        
                                                        Number of obs     =         30
        
        --------------------------------------------------------------------------------
                       |      Coef.  Legend
        ---------------+----------------------------------------------------------------
        low_norm_risk  |
                  size |  -3.660367  _b[low_norm_risk:size]
                   PPP |  -4.610978  _b[low_norm_risk:PPP]
              resource |   2.910845  _b[low_norm_risk:resource]
                  cost |  -1.700188  _b[low_norm_risk:cost]
             operation |  -.3555047  _b[low_norm_risk:operation]
                 _cons |   1.179534  _b[low_norm_risk:_cons]
        ---------------+----------------------------------------------------------------
        /low_norm      |
            var(e.risk)|   .8922328  _b[/low_norm:var(e.risk)]
        ---------------+----------------------------------------------------------------
        high_norm_risk |
                  size |   1.161779  _b[high_norm_risk:size]
                   PPP |   1.495203  _b[high_norm_risk:PPP]
              resource |   4.180792  _b[high_norm_risk:resource]
                  cost |  -.2176855  _b[high_norm_risk:cost]
             operation |   .3746816  _b[high_norm_risk:operation]
                 _cons |  -3.536634  _b[high_norm_risk:_cons]
        ---------------+----------------------------------------------------------------
        /high_norm     |
            var(e.risk)|   .5674422  _b[/high_norm:var(e.risk)]
        --------------------------------------------------------------------------------
        Added: It dawns on me that you specified in #1 that you are looking for an F-test here. But the -suest- method gives you a chi square test. Now, in the broadest sense, a chi square test is, in fact, an F-test where the denominator degrees of freedom is infinite. This similar to a z-test being a t-test with infinite degrees of freedom. In each case you are using inferences that are asymptotically correct. (With the -dataex- sample of 30 observations, asymptotically correct inferences are, of course, dicey, as 30 is pretty far from infinity, and 19 df is even more dubious. But in your real sample of > 400 observations, there should be no problem relying on the asymptotic chi-square test.)

        If, however, you literally need an F test, the interaction method will give it to you:

        Code:
        . tobit risk i.high_norm##c.(size PPP resource cost operation), ll(0)
        
        Refining starting values:
        
        Grid node 0:   log likelihood = -35.511708
        
        Fitting full model:
        
        Iteration 0:   log likelihood = -35.511708  
        Iteration 1:   log likelihood = -20.539587  
        Iteration 2:   log likelihood = -17.143342  
        Iteration 3:   log likelihood = -16.393964  
        Iteration 4:   log likelihood = -16.354811  
        Iteration 5:   log likelihood = -16.354426  
        Iteration 6:   log likelihood =  -16.35442  
        Iteration 7:   log likelihood =  -16.35442  
        
        Tobit regression                                Number of obs     =         30
                                                           Uncensored     =         11
        Limits: lower = 0                                  Left-censored  =         19
                upper = +inf                               Right-censored =          0
        
                                                        LR chi2(11)       =      34.62
                                                        Prob > chi2       =     0.0003
        Log likelihood =  -16.35442                     Pseudo R2         =     0.5142
        
        ---------------------------------------------------------------------------------------
                         risk |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        ----------------------+----------------------------------------------------------------
                  1.high_norm |  -4.932081   4.584822    -1.08   0.296    -14.52822    4.664062
                         size |  -3.616291   4.556935    -0.79   0.437    -13.15407    5.921484
                          PPP |  -4.246077   3.528965    -1.20   0.244    -11.63228     3.14013
                     resource |   2.742099   2.089211     1.31   0.205     -1.63067    7.114869
                         cost |  -1.522629   4.467367    -0.34   0.737    -10.87294    7.827677
                    operation |  -.3362266   .2086791    -1.61   0.124    -.7729969    .1005437
                              |
             high_norm#c.size |
                           1  |   4.804326   4.588378     1.05   0.308     -4.79926    14.40791
                              |
              high_norm#c.PPP |
                           1  |   5.790556   3.676782     1.57   0.132    -1.905036    13.48615
                              |
         high_norm#c.resource |
                           1  |   1.513964    2.35983     0.64   0.529    -3.425216    6.453145
                              |
             high_norm#c.cost |
                           1  |   1.340103   4.498024     0.30   0.769    -8.074369    10.75457
                              |
        high_norm#c.operation |
                           1  |   .7216254   .2649616     2.72   0.013     .1670544    1.276196
                              |
                        _cons |   1.241976   4.207516     0.30   0.771    -7.564456    10.04841
        ----------------------+----------------------------------------------------------------
                   var(e.risk)|   .6725008   .3063014                      .2592263    1.744643
        ---------------------------------------------------------------------------------------
        The nice thing here is that you don't even have to go on to a -test- command to just compare the two coefficients: you can read it right off of the regression output in the high_norm#c.operation line. The t-statistic is 2.72 with 19 df (df = 30 - 11). To translate that to an F statistic all you have to do it is take the square: F = 2.722 = 7.4, df = (1, 19).
        Last edited by Clyde Schechter; 11 Sep 2018, 15:09.

        Comment


        • #5
          Thank you very much, Clyde!!!

          Comment

          Working...
          X