Dear all,
I want to calculate the interrater agreement (e.g. Fleiss kappa/Krippendorf's alpha), however my dataset contains many missing values. A profile (varname=profileid) has been rated on average by 5 raters on trustworthiness (varname=trustworth7, etc.). In total, I have 189 raters and 259 profiles. A profile has many missing values, because it has only been rated by a small subset of the total population of raters. When I use the command kappaetc I get very low values (e.g. Krippendorf's alpha = 0.0061) which I think has to do with all the missing values. Does anyone know how to tackle this?
See below for an example of my dataset with some profiles and the trustworthinessscores of three raters.
I want to calculate the interrater agreement (e.g. Fleiss kappa/Krippendorf's alpha), however my dataset contains many missing values. A profile (varname=profileid) has been rated on average by 5 raters on trustworthiness (varname=trustworth7, etc.). In total, I have 189 raters and 259 profiles. A profile has many missing values, because it has only been rated by a small subset of the total population of raters. When I use the command kappaetc I get very low values (e.g. Krippendorf's alpha = 0.0061) which I think has to do with all the missing values. Does anyone know how to tackle this?
See below for an example of my dataset with some profiles and the trustworthinessscores of three raters.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input int profileid float(trustworth7 trustworth8 trustworth9) 1 . . . 3 . . . 5 . . . 6 . . . 7 . . . 8 . . . 9 . . . 10 . . . 11 . . . 13 . . . 15 . . . 17 . . . 18 . . . 19 . . . 20 . . . 21 . . . 22 . . . 23 . . . 24 . . . 25 . . . 26 . . . 27 . . . 28 . . . 29 . . . 30 . . . 31 . . . 32 . . . 34 . . . 35 . . . 36 . . . 37 . . . 40 . . . 41 . . . 42 . . . 45 . . . 47 . . . 49 . . . 50 . . . 51 . . . 52 . . . 53 . . . 54 . . . 57 . . . 58 . . . 60 . . . 61 . . . 63 . . . 64 . . . 65 . . 2.833333 66 . . . 69 . . . 70 . . . 72 . . . 74 . . . 75 . . . 76 . . . 80 . . . 82 . . . 83 . . . 84 . . . 87 . . 3.666667 88 . . . 89 . . . 92 . . . 94 . . . 99 . . . 102 . . . 103 . . . 104 . . . 105 . . . 106 . . . 108 . . . 109 . . . 110 . . . 112 . . . 113 . . . 114 . . . 115 . . . 116 . . . 117 . . . 120 . . . 122 . . . 124 2 5.666667 . 125 . . . 126 . . . 127 . . . 128 . . . 129 2 5.666667 . 130 . . . 131 . . . 132 . . 2.1666667 133 . . . 135 . . . 137 . . . 139 . . . 142 2 5.666667 . 143 . . . 144 . . . 145 . . . 146 . . . end
Comment