It's the following time series that has this strange property:
When I apply an augmented Dickey-Fuller test the level is stationary but the first difference of the stationary level is non-stationary:
I should admit, if I apply a Phillips-Perron test to the same time series, the result is consistent, in the sense that the level is non-stationary and the first difference is stationary.
How would you interpret this ADF result ???
Thanks for any comments!
Nora
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float ln_CPI_AUT 4.388754 4.388754 4.388754 4.3907385 4.388754 4.388754 4.3896227 4.3896227 4.393708 4.394449 4.4012165 4.398269 4.4050107 4.407938 4.407207 4.407938 4.4157033 4.4165487 4.4165487 4.4194427 4.4213676 4.4249663 4.4268804 4.4279556 4.4318876 4.433789 4.438761 4.440649 4.4426513 4.443592 4.4415917 4.444532 4.445588 4.444532 4.446526 4.4494514 4.450386 4.452252 4.45609 4.4589877 4.4599133 4.4589877 4.460953 4.460953 4.4628 4.461877 4.464758 4.4665976 4.467631 4.470381 4.469465 4.469465 4.4714103 4.470381 4.4732375 4.4751754 4.4732375 4.4751754 4.476996 4.477905 4.4816456 4.4853725 4.4853725 4.490096 4.4937916 4.4918895 4.4955783 4.4955783 4.4992537 4.501142 4.5056815 4.5065646 4.5096498 4.5146985 4.512616 4.513603 4.516667 4.515683 4.515683 4.5176497 4.5186315 4.515683 4.5196123 4.5186315 4.521571 4.5246105 4.5295844 4.5305543 4.5315237 4.5305543 4.533459 4.5315237 4.5305543 4.5315237 4.5344257 4.5344257 4.5374265 4.5422306 4.547117 4.5499744 end
PHP Code:
dfuller ln_CPI_AUT, lags(12) trend
PHP Code:
dfuller d.ln_CPI_AUT, lags(12) trend
How would you interpret this ADF result ???
Thanks for any comments!
Nora
Comment