Hi,
I need to estimate the following two models :
xi : reg ln_nb_facebook_share doc_rank doc_reactivity doc_originality doc_size i.id_news i.doc_date i.event_id if isolation==1, cluster(event_id)
estimates store iequalone
xi : reg ln_nb_facebook_share doc_rank doc_reactivity doc_originality doc_size i.id_news i.doc_date i.event_id if isolation==0, cluster(event_id)
estimates store iequalzero
suest iequalone iequalzero
test [iequalone_mean]doc_originality-[iequalzero_mean]doc_originality = 0
The issue is that I have 25,000 different values for event_id and so cannot perform the estimation because of the matsize limit (11,000).
Usually I use areg to estimate this model but suest does not work after areg.
Could you please let me know which alternative specifications I should use?
Thanks!
I need to estimate the following two models :
xi : reg ln_nb_facebook_share doc_rank doc_reactivity doc_originality doc_size i.id_news i.doc_date i.event_id if isolation==1, cluster(event_id)
estimates store iequalone
xi : reg ln_nb_facebook_share doc_rank doc_reactivity doc_originality doc_size i.id_news i.doc_date i.event_id if isolation==0, cluster(event_id)
estimates store iequalzero
suest iequalone iequalzero
test [iequalone_mean]doc_originality-[iequalzero_mean]doc_originality = 0
The issue is that I have 25,000 different values for event_id and so cannot perform the estimation because of the matsize limit (11,000).
Usually I use areg to estimate this model but suest does not work after areg.
Could you please let me know which alternative specifications I should use?
Thanks!
Comment