Hi everyone!!!
I would like to know more clearance and difference between gmm, xtabond2 and xtseqreg command. What kind of data set conditions I should use appropriate command?
I would like to know more clearance and difference between gmm, xtabond2 and xtseqreg command. What kind of data set conditions I should use appropriate command?
Code:
***GMM example** sysuse auto regress mpg gear_ratio turn gmm (mpg - {b1}*gear_ratio - {b2}*turn - {b0}), instruments(gear_ratio turn) gmm (mpg - {b1}*gear_ratio - {b2}*turn - {b0}), instruments(gear_ratio turn) derivative(/b1 = -1*gear_ratio) derivative(/b2 = -1*turn) derivative(/b0 = -1) gmm (mpg - {xb:gear_ratio turn} - {b0}), instruments(gear_ratio turn) gmm (mpg - {xb:gear_ratio turn} - {b0}), instruments(gear_ratio turn) derivative(/xb = -1) derivative(/b0 = -1) ivregress 2sls mpg gear_ratio (turn = weight length headroom) gmm (mpg - {b1}*turn - {b2}*gear_ratio - {b0}), instruments(gear_ratio weight length headroom) onestep ivregress gmm mpg gear_ratio (turn = weight length headroom) gmm (mpg - {b1}*turn - {b2}*gear_ratio - {b0}), instruments(gear_ratio weight length headroom) wmatrix(robust) ***xtabond2 Example*** use http://www.stata-press.com/data/r7/abdata.dta xtabond2 n l.n l(0/1).(w k) yr1980-yr1984, gmm(l.n w k) iv(yr1980-yr1984, passthru) noleveleq small xtabond2 n l.n l(0/1).(w k) yr1980-yr1984, gmm(l.n w k) iv(yr1980-yr1984, mz) robust twostep small h(2) xtabond2 n l(1/2).n l(0/1).w l(0/2).(k ys) yr1980-yr1984, gmm(l.n w k) iv(yr1980-yr1984) robust twostep small * Next two are equivalent, assuming id is the panel identifier ivreg2 n cap (w = k ys rec) [pw=_n], cluster(id year) orthog(rec) xtabond2 n w cap [pw=_n], iv(cap k ys, eq(level)) iv(rec, eq(level)) cluster(id year) h(1) * Same for next two regress n w k xtabond2 n w k, iv(w k, eq(level)) small h(1) * And next two, assuming xtabond updated since May 2004 with update command. xtabond n yr*, lags(1) pre(w, lags(1,.)) pre(k, endog) robust small noconstant xtabond2 n L.n w L.w k yr*, gmm(L.(w n k)) iv(yr*) noleveleq robust small * And next two xtdpd n L.n L(0/1).(w k) yr1978-yr1984, dgmm(w k n) lgmm(w k n) liv(yr1978-yr1984) vce(robust) two hascons xtabond2 n L.n L(0/1).(w k) yr1978-yr1984, gmm(L.(w k n)) iv(yr1978-yr1984, eq(level)) h(2) robust twostep * Three ways to reduce the instrument count xtabond2 n L.n L(0/1).(w k) yr1978-yr1984, gmm(L.(w k n)) iv(yr1978-yr1984, eq(level)) h(2) robust twostep pca xtabond2 n L.n L(0/1).(w k) yr1978-yr1984, gmm(L.(w k n), collapse) iv(yr1978-yr1984, eq(level)) h(2) robust twostep xtabond2 n L.n L(0/1).(w k) yr1978-yr1984, gmm(L.(w k n), lag(1 1)) iv(yr1978-yr1984, eq(level)) h(2) robust twostep * Estimation a la Hayakawa 2009 xtabond2 n L.n L(0/1).(w k) yr1979-yr1984, gmm(L.(w k n), lag(1 1) orthog) iv(yr1979-yr1984) h(2) robust twostep orthog noleveleq ***xtseqreg Example*** webuse psidextract *** Fit a first-stage model for time-varying indepvars with OLS xtseqreg lwage wks south smsa ms exp exp2 occ ind union ***Fit a second-stage model for time-invariant indepvars with OLS xtseqreg lwage (wks south smsa ms exp exp2 occ ind union) fem blk ed
Comment