Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Indicator variable vs Dummy variables and output change

    I am using Stata 12.

    I am doing a regression and have been using Dummy variables in order to use eststo: prefix.

    Simply out of idle curiosity I did the regression instead using the i. prefx for the variable used to generate the Dummy (because I think the output looks nicer.

    But it generates different levels of significance for the cateogries that if I used the Dummy variables.

    When using
    reg logmBeginToProv i.FCReg Period if DayShift ==1 & Outlier==0

    Output
    logmBeginT~v Coef. Std. Err. t P>t [95% Conf. Interval]
    FCReg
    3 0.239057 0.065421 3.65 0 0.110774 0.36734
    4 0.222279 0.063113 3.52 0 0.098521 0.346037
    5 0.067246 0.060392 1.11 0.266 -0.05118 0.185668
    6 -0.15131 0.079708 -1.9 0.058 -0.30761 0.004992
    7 0.444792 0.07781 5.72 0 0.292215 0.597369
    8 0.769023 0.061541 12.5 0 0.648348 0.889698
    15 0.84092 0.051907 16.2 0 0.739137 0.942703
    17 0.134585 0.122669 1.1 0.273 -0.10596 0.375126
    19 0.00783 0.055735 0.14 0.888 -0.10146 0.117121
    21 0.395971 0.083419 4.75 0 0.232395 0.559547
    25 -0.11284 0.061729 -1.83 0.068 -0.23388 0.008207
    27 0.283143 0.054459 5.2 0 0.176354 0.389931
    28 0.298593 0.06775 4.41 0 0.165742 0.431443
    29 0.511729 0.055338 9.25 0 0.403217 0.62024
    30 0.575785 0.065874 8.74 0 0.446613 0.704958
    Period -0.32571 0.027863 -11.69 0 -0.38034 -0.27107
    _cons 4.563697 0.035962 126.91 0 4.49318 4.634214

    Where as

    . reg logmBeginToProv FCReg_Dummy* Period if DayShift ==1 & Outlier==0

    Yields
    logmBeginTo~v Coef. Std. Err. t P>t [95% Conf. Interval]
    FCReg_Dummy1 -0.39597 0.083419 -4.75 0 -0.55955 -0.2324
    FCReg_Dummy2 -0.15691 0.088609 -1.77 0.077 -0.33067 0.01684
    FCReg_Dummy3 -0.17369 0.088775 -1.96 0.051 -0.34777 0.000387
    FCReg_Dummy4 -0.32872 0.089405 -3.68 0 -0.50404 -0.15341
    FCReg_Dummy5 -0.54728 0.101946 -5.37 0 -0.74718 -0.34737
    FCReg_Dummy6 0.048821 0.103077 0.47 0.636 -0.1533 0.250943
    FCReg_Dummy7 0.373052 0.087218 4.28 0 0.202026 0.544077
    FCReg_Dummy8 0.444949 0.080113 5.55 0 0.287856 0.602041
    FCReg_Dummy9 -0.26139 0.140065 -1.87 0.062 -0.53604 0.013266
    FCReg_Dummy10 -0.38814 0.08357 -4.64 0 -0.55201 -0.22427
    FCReg_Dummy11 0 (omitted)
    FCReg_Dummy12 -0.50881 0.089372 -5.69 0 -0.68406 -0.33356
    FCReg_Dummy13 -0.11283 0.081903 -1.38 0.168 -0.27343 0.047774
    FCReg_Dummy14 -0.09738 0.091479 -1.06 0.287 -0.27676 0.082002
    FCReg_Dummy15 0.115758 0.08035 1.44 0.15 -0.0418 0.273314
    FCReg_Dummy16 0.179814 0.091002 1.98 0.048 0.00137 0.358259
    Period -0.32571 0.027863 -11.69 0 -0.38034 -0.27107
    _cons 4.959668 0.076574 64.77 0 4.809514 5.109822

    With different p values for the same categories (I have cross checked)

    The R2 etc is the same and other independent variable values are not affected.

    Is this normal behavior? I thought these different approaches would yield the same result? Is it to do with the ommited variable in each?

    It doesn't really matter as I am just controlling for these to isolate another variable effect. But I thought it was curious.

    Thanks,

    Peregrine

  • #2
    All of your dummy parameters are essentially changes versus the omitted category. You've switched omitted categories so all of the parameters change. This is normal. You can control the omitted category in factor variable notation if you want to - look at the documentation.

    Comment


    • #3
      Thanks Phil!

      Yeah. I figured it was something elementary like that. Figuring out which one was dropped in the factor variable analysis and using the ib# prefix sorted the problem out.


      Watch this space for questions about other very basic issues.

      Peregrine

      Comment

      Working...
      X