Hello friends and STATA experts,
after quick and great help with my last problem I've come to seek your wisdom again, hopefully.
I'm running a simple random effects regression: DV (ESG) and IV (Sh and Pa). So far, so good:
. xtreg $ylist $xlist, re
Random-effects GLS regression Number of obs = 4,801
Group variable: comp Number of groups = 683
R-sq: Obs per group:
within = 0.0312 min = 1
between = 0.0936 avg = 7.0
overall = 0.0531 max = 8
Wald chi2(2) = 204.63
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
ESG | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Sh | -.0717968 .0105774 -6.79 0.000 -.092528 -.0510655
Pa | -7.636461 .663959 -11.50 0.000 -8.937797 -6.335126
_cons | 56.73223 .7828353 72.47 0.000 55.1979 58.26656
-------------+----------------------------------------------------------------
sigma_u | 9.1761324
sigma_e | 19.153479
rho | .18667569 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Now, I'm trying to include a moderating (dummy) variable to see if Industry effects affect the relationship of the DV and IV.
My moderaing variable is 1 for controversial industries and 0 for uncontroversial industries. I want to show that this variable moderates the realtionship between my DV(ESG) and one of my IV(Sh).
And at this point I'm not sure how to show that. I tried it this way:
. xtreg $ylist Sh Industry, re
Random-effects GLS regression Number of obs = 4,801
Group variable: comp Number of groups = 683
R-sq: Obs per group:
within = 0.0117 min = 1
between = 0.0283 avg = 7.0
overall = 0.0185 max = 8
Wald chi2(2) = 69.94
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
ESG | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Sh | -.0885863 .0106335 -8.33 0.000 -.1094275 -.0677451
Industry | -.692654 1.611324 -0.43 0.667 -3.85079 2.465483
_cons | 53.18053 .7455474 71.33 0.000 51.71928 54.64178
-------------+----------------------------------------------------------------
sigma_u | 9.6593325
sigma_e | 19.34267
rho | .19960292 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Does this come close?
Can I forget all about the effect anyway because the p-value is lightyears from significance?
Thank you kindly for all help and comments in advance,
Konstantin
after quick and great help with my last problem I've come to seek your wisdom again, hopefully.
I'm running a simple random effects regression: DV (ESG) and IV (Sh and Pa). So far, so good:
. xtreg $ylist $xlist, re
Random-effects GLS regression Number of obs = 4,801
Group variable: comp Number of groups = 683
R-sq: Obs per group:
within = 0.0312 min = 1
between = 0.0936 avg = 7.0
overall = 0.0531 max = 8
Wald chi2(2) = 204.63
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
ESG | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Sh | -.0717968 .0105774 -6.79 0.000 -.092528 -.0510655
Pa | -7.636461 .663959 -11.50 0.000 -8.937797 -6.335126
_cons | 56.73223 .7828353 72.47 0.000 55.1979 58.26656
-------------+----------------------------------------------------------------
sigma_u | 9.1761324
sigma_e | 19.153479
rho | .18667569 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Now, I'm trying to include a moderating (dummy) variable to see if Industry effects affect the relationship of the DV and IV.
My moderaing variable is 1 for controversial industries and 0 for uncontroversial industries. I want to show that this variable moderates the realtionship between my DV(ESG) and one of my IV(Sh).
And at this point I'm not sure how to show that. I tried it this way:
. xtreg $ylist Sh Industry, re
Random-effects GLS regression Number of obs = 4,801
Group variable: comp Number of groups = 683
R-sq: Obs per group:
within = 0.0117 min = 1
between = 0.0283 avg = 7.0
overall = 0.0185 max = 8
Wald chi2(2) = 69.94
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
------------------------------------------------------------------------------
ESG | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Sh | -.0885863 .0106335 -8.33 0.000 -.1094275 -.0677451
Industry | -.692654 1.611324 -0.43 0.667 -3.85079 2.465483
_cons | 53.18053 .7455474 71.33 0.000 51.71928 54.64178
-------------+----------------------------------------------------------------
sigma_u | 9.6593325
sigma_e | 19.34267
rho | .19960292 (fraction of variance due to u_i)
------------------------------------------------------------------------------
Does this come close?
Can I forget all about the effect anyway because the p-value is lightyears from significance?
Thank you kindly for all help and comments in advance,
Konstantin
Comment