I am trying to figure out why I receive an error after using lrtest to compare two models following melogit. In the first model, I include age as a categorical variable. In the second model, I include age and age squared as continuous variables. The second model should be nested in the first, but I receive error r(498) "Mixed models are not nested." Interestingly, I do not receive an error message when I use mixed or xtmelogit or when I exclude age-squared from the second model or when I use dummy variables instead of factor variables in the first model.
Here is a reproducible example of the error using a demo of the high school and beyond data. I do not have the ability to update Stata.
Stata/SE 15.0 for Windows (64-bit x86-64)
Revision 06 Jun 2017
Here is a reproducible example of the error using a demo of the high school and beyond data. I do not have the ability to update Stata.
Stata/SE 15.0 for Windows (64-bit x86-64)
Revision 06 Jun 2017
Code:
use "https://stats.idre.ucla.edu/stat/data/hsbdemo.dta", clear keep id cid honors * generate age (0 to 5) gen age = floor(6*runiform() + 0) tab age, gen(age) * (1) xtmelogit xtmelogit honors i.age || cid:, nolog estimates store m1 xtmelogit honors c.age##c.age || cid:, nolog lrtest m1 * (2) mixed mixed honors i.age || cid:, nolog estimates store m1 mixed honors c.age##c.age || cid:, nolog lrtest m1 * (3) melogit (no factor variables) melogit honors age2-age6 || cid:, nolog estimates store m1 melogit honors c.age##c.age || cid:, nolog lrtest m1 * (4) melogit melogit honors i.age || cid:, nolog estimates store m1 melogit honors c.age##c.age || cid:, nolog lrtest m1
Code:
. * (1) xtmelogit . xtmelogit honors i.age || cid:, nolog Mixed-effects logistic regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Integration points = 7 Wald chi2(5) = 12.44 Log likelihood = -74.701593 Prob > chi2 = 0.0293 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | 1 | -.1733401 .8012485 -0.22 0.829 -1.743758 1.397078 2 | -.3941871 .8879459 -0.44 0.657 -2.134529 1.346155 3 | .2470597 .9129151 0.27 0.787 -1.542221 2.03634 4 | 2.084026 .9343249 2.23 0.026 .2527832 3.915269 5 | -1.498702 .9218457 -1.63 0.104 -3.305487 .3080821 | _cons | -2.475971 1.018342 -2.43 0.015 -4.471884 -.4800577 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ cid: Identity | sd(_cons) | 2.913941 .7780829 1.726602 4.917783 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 68.71 Prob >= chibar2 = 0.0000 . estimates store m1 . . xtmelogit honors c.age##c.age || cid:, nolog Mixed-effects logistic regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Integration points = 7 Wald chi2(2) = 1.31 Log likelihood = -82.427681 Prob > chi2 = 0.5205 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .5909583 .5243571 1.13 0.260 -.4367627 1.618679 | c.age#c.age | -.1140369 .1002671 -1.14 0.255 -.3105567 .082483 | _cons | -2.449259 .8802882 -2.78 0.005 -4.174593 -.7239263 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ cid: Identity | sd(_cons) | 2.56678 .6665902 1.542881 4.270167 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 66.12 Prob >= chibar2 = 0.0000 . lrtest m1 Likelihood-ratio test LR chi2(3) = 15.45 (Assumption: . nested in m1) Prob > chi2 = 0.0015 . . * (2) mixed . mixed honors i.age || cid:, nolog Mixed-effects ML regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Wald chi2(5) = 17.22 Log likelihood = -70.654349 Prob > chi2 = 0.0041 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | 1 | -.0189632 .0776508 -0.24 0.807 -.1711559 .1332296 2 | -.0497185 .0807616 -0.62 0.538 -.2080084 .1085713 3 | .0015014 .0853372 0.02 0.986 -.1657563 .1687592 4 | .1738509 .0778137 2.23 0.025 .0213389 .3263628 5 | -.1424887 .0811943 -1.75 0.079 -.3016266 .0166493 | _cons | .2659201 .0873002 3.05 0.002 .0948147 .4370254 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ cid: Identity | var(_cons) | .0878426 .0307969 .0441856 .1746342 -----------------------------+------------------------------------------------ var(Residual) | .0939999 .0099082 .0764549 .1155713 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 85.92 Prob >= chibar2 = 0.0000 . estimates store m1 . . mixed honors c.age##c.age || cid:, nolog Mixed-effects ML regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Wald chi2(2) = 1.39 Log likelihood = -78.212003 Prob > chi2 = 0.4986 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0604468 .0523612 1.15 0.248 -.0421793 .1630728 | c.age#c.age | -.0117794 .0100052 -1.18 0.239 -.0313891 .0078304 | _cons | .2235274 .08666 2.58 0.010 .0536768 .3933779 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ cid: Identity | var(_cons) | .0917306 .0322449 .0460577 .1826948 -----------------------------+------------------------------------------------ var(Residual) | .1017038 .0107192 .0827225 .1250405 ------------------------------------------------------------------------------ LR test vs. linear model: chibar2(01) = 83.66 Prob >= chibar2 = 0.0000 . lrtest m1 Likelihood-ratio test LR chi2(3) = 15.12 (Assumption: . nested in m1) Prob > chi2 = 0.0017 . . * (3) melogit (no factor variables) . . melogit honors age2-age6 || cid:, nolog Mixed-effects logistic regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Integration method: mvaghermite Integration pts. = 7 Wald chi2(5) = 12.56 Log likelihood = -74.635274 Prob > chi2 = 0.0278 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age2 | -.1720487 .8026755 -0.21 0.830 -1.745264 1.401166 age3 | -.3887137 .8896556 -0.44 0.662 -2.132407 1.354979 age4 | .2527461 .91495 0.28 0.782 -1.540523 2.046015 age5 | 2.089703 .9305742 2.25 0.025 .2658107 3.913594 age6 | -1.499533 .9232011 -1.62 0.104 -3.308974 .3099077 _cons | -2.535821 1.009193 -2.51 0.012 -4.513803 -.5578385 -------------+---------------------------------------------------------------- cid | var(_cons)| 8.954448 5.084708 2.942328 27.25125 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 68.84 Prob >= chibar2 = 0.0000 . estimates store m1 . . melogit honors c.age##c.age || cid:, nolog Mixed-effects logistic regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Integration method: mvaghermite Integration pts. = 7 Wald chi2(2) = 1.32 Log likelihood = -82.366054 Prob > chi2 = 0.5169 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .5949913 .5249916 1.13 0.257 -.4339734 1.623956 | c.age#c.age | -.114767 .1003773 -1.14 0.253 -.3115028 .0819689 | _cons | -2.490561 .8634145 -2.88 0.004 -4.182823 -.7983003 -------------+---------------------------------------------------------------- cid | var(_cons)| 6.930176 3.823084 2.350566 20.43224 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 66.25 Prob >= chibar2 = 0.0000 . lrtest m1 Likelihood-ratio test LR chi2(3) = 15.46 (Assumption: . nested in m1) Prob > chi2 = 0.0015 . . * (4) melogit . melogit honors i.age || cid:, nolog Mixed-effects logistic regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Integration method: mvaghermite Integration pts. = 7 Wald chi2(5) = 12.56 Log likelihood = -74.635274 Prob > chi2 = 0.0278 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | 1 | -.1720487 .8026755 -0.21 0.830 -1.745264 1.401166 2 | -.3887137 .8896556 -0.44 0.662 -2.132407 1.354979 3 | .2527461 .91495 0.28 0.782 -1.540523 2.046015 4 | 2.089703 .9305742 2.25 0.025 .2658107 3.913594 5 | -1.499533 .9232011 -1.62 0.104 -3.308974 .3099077 | _cons | -2.535821 1.009193 -2.51 0.012 -4.513803 -.5578385 -------------+---------------------------------------------------------------- cid | var(_cons)| 8.954448 5.084708 2.942328 27.25125 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 68.84 Prob >= chibar2 = 0.0000 . estimates store m1 . . melogit honors c.age##c.age || cid:, nolog Mixed-effects logistic regression Number of obs = 200 Group variable: cid Number of groups = 20 Obs per group: min = 7 avg = 10.0 max = 12 Integration method: mvaghermite Integration pts. = 7 Wald chi2(2) = 1.32 Log likelihood = -82.366054 Prob > chi2 = 0.5169 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .5949913 .5249916 1.13 0.257 -.4339734 1.623956 | c.age#c.age | -.114767 .1003773 -1.14 0.253 -.3115028 .0819689 | _cons | -2.490561 .8634145 -2.88 0.004 -4.182823 -.7983003 -------------+---------------------------------------------------------------- cid | var(_cons)| 6.930176 3.823084 2.350566 20.43224 ------------------------------------------------------------------------------ LR test vs. logistic model: chibar2(01) = 66.25 Prob >= chibar2 = 0.0000 . lrtest m1 Mixed models are not nested r(498);
Comment