Hello,
I am having issues to estimate and store regression coefficients in a loop. To make myself clear I will describe the step that I want my command in stata to achieve.
First, I generated a time variable. Next, I reshaped my data from wide to long format 25 stocks with weekly returns in one year.
I am trying to run a loop 25 multiple regressions for Fama/French and store the constants, t-statistic, and p-value. The loop for regressions works. However,
when I run the loop for replacing the variables Stata only stores the output of the last regression for all generated variables, instead of for all 25 regressions.
I think I am missing a step between running the regression and replacing the variables.
Will you please advise me.
Thank you in advance!
This is my dataset in long format:
This is what happens after I run the last forvalues loop. As you can see Stata only stores coefficients for the last regression output.
I am having issues to estimate and store regression coefficients in a loop. To make myself clear I will describe the step that I want my command in stata to achieve.
First, I generated a time variable. Next, I reshaped my data from wide to long format 25 stocks with weekly returns in one year.
I am trying to run a loop 25 multiple regressions for Fama/French and store the constants, t-statistic, and p-value. The loop for regressions works. However,
when I run the loop for replacing the variables Stata only stores the output of the last regression for all generated variables, instead of for all 25 regressions.
I think I am missing a step between running the regression and replacing the variables.
Will you please advise me.
Thank you in advance!
This is my dataset in long format:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float time byte stock double(MktRF SMB HML RMW CMA P) float(alpha tstat pvalue) 1 1 -1.11 -.52 -.03 .23 .05 -.06737918215613387 0 0 0 1 2 -1.11 -.52 -.03 .23 .05 -.050800609031739934 0 0 0 1 3 -1.11 -.52 -.03 .23 .05 -.051464549685190326 0 0 0 1 4 -1.11 -.52 -.03 .23 .05 -.0663709805163947 0 0 0 1 5 -1.11 -.52 -.03 .23 .05 -.10097517117366342 0 0 0 1 6 -1.11 -.52 -.03 .23 .05 -.2543554006968641 0 0 0 1 7 -1.11 -.52 -.03 .23 .05 -.08746087276744614 0 0 0 1 8 -1.11 -.52 -.03 .23 .05 -.04082163286531462 0 0 0 1 9 -1.11 -.52 -.03 .23 .05 -.06216782090513769 0 0 0 1 10 -1.11 -.52 -.03 .23 .05 -.027121697357886245 0 0 0 1 11 -1.11 -.52 -.03 .23 .05 -.033752327746741057 0 0 0 1 12 -1.11 -.52 -.03 .23 .05 -.08830022075055183 0 0 0 1 13 -1.11 -.52 -.03 .23 .05 -.04056097896328891 0 0 0 1 14 -1.11 -.52 -.03 .23 .05 .03654159869494293 0 0 0 1 15 -1.11 -.52 -.03 .23 .05 -.10859903381642508 0 0 0 1 16 -1.11 -.52 -.03 .23 .05 -.08118956394818469 0 0 0 1 17 -1.11 -.52 -.03 .23 .05 -.09783722599327987 0 0 0 1 18 -1.11 -.52 -.03 .23 .05 -.13865932047750232 0 0 0 1 19 -1.11 -.52 -.03 .23 .05 -.035722762876809935 0 0 0 1 20 -1.11 -.52 -.03 .23 .05 -.08667736757624395 0 0 0 1 21 -1.11 -.52 -.03 .23 .05 -.019111860595840417 0 0 0 1 22 -1.11 -.52 -.03 .23 .05 -.051669147352753554 0 0 0 1 23 -1.11 -.52 -.03 .23 .05 -.08586083853702055 0 0 0 1 24 -1.11 -.52 -.03 .23 .05 -.025283347863993156 0 0 0 1 25 -1.11 -.52 -.03 .23 .05 -.05677721701514056 0 0 0 2 1 -2.14 .4 -.21 .31 .33 -.012812299807815583 0 0 0 2 2 -2.14 .4 -.21 .31 .33 .000662779301543388 0 0 0 2 3 -2.14 .4 -.21 .31 .33 -.015295815295815125 0 0 0 2 4 -2.14 .4 -.21 .31 .33 -.06435923538061318 0 0 0 2 5 -2.14 .4 -.21 .31 .33 -.03354104161858604 0 0 0 2 6 -2.14 .4 -.21 .31 .33 -.05140186915887844 0 0 0 2 7 -2.14 .4 -.21 .31 .33 -.046811945117029866 0 0 0 2 8 -2.14 .4 -.21 .31 .33 .0018975332068311272 0 0 0 2 9 -2.14 .4 -.21 .31 .33 -.0017173278378842763 0 0 0 2 10 -2.14 .4 -.21 .31 .33 -.03374138463121079 0 0 0 2 11 -2.14 .4 -.21 .31 .33 -.00024090580583004372 0 0 0 2 12 -2.14 .4 -.21 .31 .33 -.01493139628732853 0 0 0 2 13 -2.14 .4 -.21 .31 .33 -.011607910576096335 0 0 0 2 14 -2.14 .4 -.21 .31 .33 -.02533836953100419 0 0 0 2 15 -2.14 .4 -.21 .31 .33 -.079340992846304 0 0 0 2 16 -2.14 .4 -.21 .31 .33 -.04626687847498011 0 0 0 2 17 -2.14 .4 -.21 .31 .33 -.051092983768508314 0 0 0 2 18 -2.14 .4 -.21 .31 .33 -.02096659559346126 0 0 0 2 19 -2.14 .4 -.21 .31 .33 -.00012307692307681113 0 0 0 2 20 -2.14 .4 -.21 .31 .33 .00140597539543055 0 0 0 2 21 -2.14 .4 -.21 .31 .33 -.015854823304680004 0 0 0 2 22 -2.14 .4 -.21 .31 .33 -.04573991031390132 0 0 0 2 23 -2.14 .4 -.21 .31 .33 -.016589412051719925 0 0 0 2 24 -2.14 .4 -.21 .31 .33 .013416815742397222 0 0 0 2 25 -2.14 .4 -.21 .31 .33 -.02560672654309198 0 0 0 3 1 2.08 .14 -.19 -.38 -.76 .005984569904102765 0 0 0 3 2 2.08 .14 -.19 -.38 -.76 .009903396960280794 0 0 0 3 3 2.08 .14 -.19 -.38 -.76 .01992966002344665 0 0 0 3 4 2.08 .14 -.19 -.38 -.76 .009368955512572602 0 0 0 3 5 2.08 .14 -.19 -.38 -.76 -.008119079837618485 0 0 0 3 6 2.08 .14 -.19 -.38 -.76 -.004926108374384349 0 0 0 3 7 2.08 .14 -.19 -.38 -.76 -.010584250635055038 0 0 0 3 8 2.08 .14 -.19 -.38 -.76 .027056277056277056 0 0 0 3 9 2.08 .14 -.19 -.38 -.76 .006881128505074808 0 0 0 3 10 2.08 .14 -.19 -.38 -.76 .020440753752794652 0 0 0 3 11 2.08 .14 -.19 -.38 -.76 .013493975903614513 0 0 0 3 12 2.08 .14 -.19 -.38 -.76 .0040966816878329135 0 0 0 3 13 2.08 .14 -.19 -.38 -.76 -.0030448020878641982 0 0 0 3 14 2.08 .14 -.19 -.38 -.76 .012271919909575409 0 0 0 3 15 2.08 .14 -.19 -.38 -.76 -.03319990581586995 0 0 0 3 16 2.08 .14 -.19 -.38 -.76 .04726212783676875 0 0 0 3 17 2.08 .14 -.19 -.38 -.76 -.0032951265495437133 0 0 0 3 18 2.08 .14 -.19 -.38 -.76 .034119782214156125 0 0 0 3 19 2.08 .14 -.19 -.38 -.76 .015263417035942821 0 0 0 3 20 2.08 .14 -.19 -.38 -.76 -.008775008775008775 0 0 0 3 21 2.08 .14 -.19 -.38 -.76 .0283385093167702 0 0 0 3 22 2.08 .14 -.19 -.38 -.76 .055451127819548855 0 0 0 3 23 2.08 .14 -.19 -.38 -.76 .03200198461920117 0 0 0 3 24 2.08 .14 -.19 -.38 -.76 .03383348043542214 0 0 0 3 25 2.08 .14 -.19 -.38 -.76 .02549519513630118 0 0 0 4 1 2.57 .59 .37 .18 .47 .08228211009174304 0 0 0 4 2 2.57 .59 .37 .18 .47 .12422336413712734 0 0 0 4 3 2.57 .59 .37 .18 .47 .04339080459770109 0 0 0 4 4 2.57 .59 .37 .18 .47 -.003473261871968456 0 0 0 4 5 2.57 .59 .37 .18 .47 -.03595217077281109 0 0 0 4 6 2.57 .59 .37 .18 .47 .08910891089108919 0 0 0 4 7 2.57 .59 .37 .18 .47 .017971758664955144 0 0 0 4 8 2.57 .59 .37 .18 .47 0 0 0 0 4 9 2.57 .59 .37 .18 .47 .035366478728857 0 0 0 4 10 2.57 .59 .37 .18 .47 .03599374021909236 0 0 0 4 11 2.57 .59 .37 .18 .47 .02044698050404183 0 0 0 4 12 2.57 .59 .37 .18 .47 .02468380252957978 0 0 0 4 13 2.57 .59 .37 .18 .47 -.028068644560791254 0 0 0 4 14 2.57 .59 .37 .18 .47 .05854203222204489 0 0 0 4 15 2.57 .59 .37 .18 .47 .03701899659035565 0 0 0 4 16 2.57 .59 .37 .18 .47 .052286282306162925 0 0 0 4 17 2.57 .59 .37 .18 .47 .07497133387457207 0 0 0 4 18 2.57 .59 .37 .18 .47 -.0028080028080028725 0 0 0 4 19 2.57 .59 .37 .18 .47 -.040979631425800134 0 0 0 4 20 2.57 .59 .37 .18 .47 .03045325779036825 0 0 0 4 21 2.57 .59 .37 .18 .47 -.0005662514156285605 0 0 0 4 22 2.57 .59 .37 .18 .47 .02827248441674094 0 0 0 4 23 2.57 .59 .37 .18 .47 .036057692307692304 0 0 0 4 24 2.57 .59 .37 .18 .47 .02618099032441667 0 0 0 4 25 2.57 .59 .37 .18 .47 .05354752342704158 0 0 0 end
Code:
gen time =_n reshape long P, i(time) j(stock) gen alpha=0 gen tstat=0 gen pvalue=0 forvalues i=1/25 { reg P MktRF SMB HML RMW CMA if stock ==`i' } forvalues i=1/25 { replace alpha=_b[_cons] if stock == `i' replace tstat= _b[_cons] / _se[_cons] if stock ==`i' replace pvalue= 2*ttail((_N-1),abs(tstat)) if stock == `i' }
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float time byte stock double(MktRF SMB HML RMW CMA P) float(alpha tstat pvalue) 1 1 -1.11 -.52 -.03 .23 .05 -.06737918215613387 .003726126 1.2680005 .205025 1 2 -1.11 -.52 -.03 .23 .05 -.050800609031739934 .003726126 1.2680005 .205025 1 3 -1.11 -.52 -.03 .23 .05 -.051464549685190326 .003726126 1.2680005 .205025 1 4 -1.11 -.52 -.03 .23 .05 -.0663709805163947 .003726126 1.2680005 .205025 1 5 -1.11 -.52 -.03 .23 .05 -.10097517117366342 .003726126 1.2680005 .205025 1 6 -1.11 -.52 -.03 .23 .05 -.2543554006968641 .003726126 1.2680005 .205025 1 7 -1.11 -.52 -.03 .23 .05 -.08746087276744614 .003726126 1.2680005 .205025 1 8 -1.11 -.52 -.03 .23 .05 -.04082163286531462 .003726126 1.2680005 .205025 1 9 -1.11 -.52 -.03 .23 .05 -.06216782090513769 .003726126 1.2680005 .205025 1 10 -1.11 -.52 -.03 .23 .05 -.027121697357886245 .003726126 1.2680005 .205025 1 11 -1.11 -.52 -.03 .23 .05 -.033752327746741057 .003726126 1.2680005 .205025 1 12 -1.11 -.52 -.03 .23 .05 -.08830022075055183 .003726126 1.2680005 .205025 1 13 -1.11 -.52 -.03 .23 .05 -.04056097896328891 .003726126 1.2680005 .205025 1 14 -1.11 -.52 -.03 .23 .05 .03654159869494293 .003726126 1.2680005 .205025 1 15 -1.11 -.52 -.03 .23 .05 -.10859903381642508 .003726126 1.2680005 .205025 1 16 -1.11 -.52 -.03 .23 .05 -.08118956394818469 .003726126 1.2680005 .205025 1 17 -1.11 -.52 -.03 .23 .05 -.09783722599327987 .003726126 1.2680005 .205025 1 18 -1.11 -.52 -.03 .23 .05 -.13865932047750232 .003726126 1.2680005 .205025 1 19 -1.11 -.52 -.03 .23 .05 -.035722762876809935 .003726126 1.2680005 .205025 1 20 -1.11 -.52 -.03 .23 .05 -.08667736757624395 .003726126 1.2680005 .205025 1 21 -1.11 -.52 -.03 .23 .05 -.019111860595840417 .003726126 1.2680005 .205025 1 22 -1.11 -.52 -.03 .23 .05 -.051669147352753554 .003726126 1.2680005 .205025 1 23 -1.11 -.52 -.03 .23 .05 -.08586083853702055 .003726126 1.2680005 .205025 1 24 -1.11 -.52 -.03 .23 .05 -.025283347863993156 .003726126 1.2680005 .205025 1 25 -1.11 -.52 -.03 .23 .05 -.05677721701514056 .003726126 1.2680005 .205025 2 1 -2.14 .4 -.21 .31 .33 -.012812299807815583 .003726126 1.2680005 .205025 2 2 -2.14 .4 -.21 .31 .33 .000662779301543388 .003726126 1.2680005 .205025 2 3 -2.14 .4 -.21 .31 .33 -.015295815295815125 .003726126 1.2680005 .205025 2 4 -2.14 .4 -.21 .31 .33 -.06435923538061318 .003726126 1.2680005 .205025 2 5 -2.14 .4 -.21 .31 .33 -.03354104161858604 .003726126 1.2680005 .205025 2 6 -2.14 .4 -.21 .31 .33 -.05140186915887844 .003726126 1.2680005 .205025 2 7 -2.14 .4 -.21 .31 .33 -.046811945117029866 .003726126 1.2680005 .205025 2 8 -2.14 .4 -.21 .31 .33 .0018975332068311272 .003726126 1.2680005 .205025 2 9 -2.14 .4 -.21 .31 .33 -.0017173278378842763 .003726126 1.2680005 .205025 2 10 -2.14 .4 -.21 .31 .33 -.03374138463121079 .003726126 1.2680005 .205025 2 11 -2.14 .4 -.21 .31 .33 -.00024090580583004372 .003726126 1.2680005 .205025 2 12 -2.14 .4 -.21 .31 .33 -.01493139628732853 .003726126 1.2680005 .205025 2 13 -2.14 .4 -.21 .31 .33 -.011607910576096335 .003726126 1.2680005 .205025 2 14 -2.14 .4 -.21 .31 .33 -.02533836953100419 .003726126 1.2680005 .205025 2 15 -2.14 .4 -.21 .31 .33 -.079340992846304 .003726126 1.2680005 .205025 2 16 -2.14 .4 -.21 .31 .33 -.04626687847498011 .003726126 1.2680005 .205025 2 17 -2.14 .4 -.21 .31 .33 -.051092983768508314 .003726126 1.2680005 .205025 2 18 -2.14 .4 -.21 .31 .33 -.02096659559346126 .003726126 1.2680005 .205025 2 19 -2.14 .4 -.21 .31 .33 -.00012307692307681113 .003726126 1.2680005 .205025 2 20 -2.14 .4 -.21 .31 .33 .00140597539543055 .003726126 1.2680005 .205025 2 21 -2.14 .4 -.21 .31 .33 -.015854823304680004 .003726126 1.2680005 .205025 2 22 -2.14 .4 -.21 .31 .33 -.04573991031390132 .003726126 1.2680005 .205025 2 23 -2.14 .4 -.21 .31 .33 -.016589412051719925 .003726126 1.2680005 .205025 2 24 -2.14 .4 -.21 .31 .33 .013416815742397222 .003726126 1.2680005 .205025 2 25 -2.14 .4 -.21 .31 .33 -.02560672654309198 .003726126 1.2680005 .205025 3 1 2.08 .14 -.19 -.38 -.76 .005984569904102765 .003726126 1.2680005 .205025 3 2 2.08 .14 -.19 -.38 -.76 .009903396960280794 .003726126 1.2680005 .205025 3 3 2.08 .14 -.19 -.38 -.76 .01992966002344665 .003726126 1.2680005 .205025 3 4 2.08 .14 -.19 -.38 -.76 .009368955512572602 .003726126 1.2680005 .205025 3 5 2.08 .14 -.19 -.38 -.76 -.008119079837618485 .003726126 1.2680005 .205025 3 6 2.08 .14 -.19 -.38 -.76 -.004926108374384349 .003726126 1.2680005 .205025 3 7 2.08 .14 -.19 -.38 -.76 -.010584250635055038 .003726126 1.2680005 .205025 3 8 2.08 .14 -.19 -.38 -.76 .027056277056277056 .003726126 1.2680005 .205025 3 9 2.08 .14 -.19 -.38 -.76 .006881128505074808 .003726126 1.2680005 .205025 3 10 2.08 .14 -.19 -.38 -.76 .020440753752794652 .003726126 1.2680005 .205025 3 11 2.08 .14 -.19 -.38 -.76 .013493975903614513 .003726126 1.2680005 .205025 3 12 2.08 .14 -.19 -.38 -.76 .0040966816878329135 .003726126 1.2680005 .205025 3 13 2.08 .14 -.19 -.38 -.76 -.0030448020878641982 .003726126 1.2680005 .205025 3 14 2.08 .14 -.19 -.38 -.76 .012271919909575409 .003726126 1.2680005 .205025 3 15 2.08 .14 -.19 -.38 -.76 -.03319990581586995 .003726126 1.2680005 .205025 3 16 2.08 .14 -.19 -.38 -.76 .04726212783676875 .003726126 1.2680005 .205025 3 17 2.08 .14 -.19 -.38 -.76 -.0032951265495437133 .003726126 1.2680005 .205025 3 18 2.08 .14 -.19 -.38 -.76 .034119782214156125 .003726126 1.2680005 .205025 3 19 2.08 .14 -.19 -.38 -.76 .015263417035942821 .003726126 1.2680005 .205025 3 20 2.08 .14 -.19 -.38 -.76 -.008775008775008775 .003726126 1.2680005 .205025 3 21 2.08 .14 -.19 -.38 -.76 .0283385093167702 .003726126 1.2680005 .205025 3 22 2.08 .14 -.19 -.38 -.76 .055451127819548855 .003726126 1.2680005 .205025 3 23 2.08 .14 -.19 -.38 -.76 .03200198461920117 .003726126 1.2680005 .205025 3 24 2.08 .14 -.19 -.38 -.76 .03383348043542214 .003726126 1.2680005 .205025 3 25 2.08 .14 -.19 -.38 -.76 .02549519513630118 .003726126 1.2680005 .205025 4 1 2.57 .59 .37 .18 .47 .08228211009174304 .003726126 1.2680005 .205025 4 2 2.57 .59 .37 .18 .47 .12422336413712734 .003726126 1.2680005 .205025 4 3 2.57 .59 .37 .18 .47 .04339080459770109 .003726126 1.2680005 .205025 4 4 2.57 .59 .37 .18 .47 -.003473261871968456 .003726126 1.2680005 .205025 4 5 2.57 .59 .37 .18 .47 -.03595217077281109 .003726126 1.2680005 .205025 4 6 2.57 .59 .37 .18 .47 .08910891089108919 .003726126 1.2680005 .205025 4 7 2.57 .59 .37 .18 .47 .017971758664955144 .003726126 1.2680005 .205025 4 8 2.57 .59 .37 .18 .47 0 .003726126 1.2680005 .205025 4 9 2.57 .59 .37 .18 .47 .035366478728857 .003726126 1.2680005 .205025 4 10 2.57 .59 .37 .18 .47 .03599374021909236 .003726126 1.2680005 .205025 4 11 2.57 .59 .37 .18 .47 .02044698050404183 .003726126 1.2680005 .205025 4 12 2.57 .59 .37 .18 .47 .02468380252957978 .003726126 1.2680005 .205025 4 13 2.57 .59 .37 .18 .47 -.028068644560791254 .003726126 1.2680005 .205025 4 14 2.57 .59 .37 .18 .47 .05854203222204489 .003726126 1.2680005 .205025 4 15 2.57 .59 .37 .18 .47 .03701899659035565 .003726126 1.2680005 .205025 4 16 2.57 .59 .37 .18 .47 .052286282306162925 .003726126 1.2680005 .205025 4 17 2.57 .59 .37 .18 .47 .07497133387457207 .003726126 1.2680005 .205025 4 18 2.57 .59 .37 .18 .47 -.0028080028080028725 .003726126 1.2680005 .205025 4 19 2.57 .59 .37 .18 .47 -.040979631425800134 .003726126 1.2680005 .205025 4 20 2.57 .59 .37 .18 .47 .03045325779036825 .003726126 1.2680005 .205025 4 21 2.57 .59 .37 .18 .47 -.0005662514156285605 .003726126 1.2680005 .205025 4 22 2.57 .59 .37 .18 .47 .02827248441674094 .003726126 1.2680005 .205025 4 23 2.57 .59 .37 .18 .47 .036057692307692304 .003726126 1.2680005 .205025 4 24 2.57 .59 .37 .18 .47 .02618099032441667 .003726126 1.2680005 .205025 4 25 2.57 .59 .37 .18 .47 .05354752342704158 .003726126 1.2680005 .205025 end
Comment