Hello,
I´m working with panel data for my thesis and it is a small panel data only 17 countries and 15 years. What I´m exactly doing is analyzing the effect that corruption has on gdppercapita. I also use other variables but they are considered as "control variables" . I started with a simple model where I estimated FE and then RE but I cluster the SEs in order to deal with heteroskedasticity and autocorrelation problems (as it was recommmened previously in one of my quesion in the forum) and then to decide which one would be better I used the command "xtoverid". You can see my commands
. xtreg gdppercapita cpi, fe cluster(country)
Fixed-effects (within) regression Number of obs = 264
Group variable: country1 Number of groups = 17
R-sq: within = 0.1327 Obs per group: min = 14
between = 0.4349 avg = 15.5
overall = 0.3896 max = 16
F(1,16) = 9.22
corr(u_i, Xb) = 0.1529 Prob > F = 0.0079
(Std. Err. adjusted for 17 clusters in country)
Robust
gdppercapita Coef. Std. Err. t P>t [95% Conf. Interval]
cpi 179.3757 59.06557 3.04 0.008 54.16224 304.5891
_cons 3996.204 2172.897 1.84 0.085 -610.1317 8602.54
sigma_u 3507.3843
sigma_e 1664.3803
rho .81620361 (fraction of variance due to u_i)
. estimates store fixed
. xtreg gdppercapita cpi, re cluster(country)
Random-effects GLS regression Number of obs = 264
Group variable: country1 Number of groups = 17
R-sq: Obs per group:
within = 0.1327 min = 14
between = 0.4349 avg = 15.5
overall = 0.3896 max = 16
Wald chi2(1) = 16.28
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0001
(Std. Err. adjusted for 17 clusters in country)
------------------------------------------------------------------------------
| Robust
gdppercapita | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cpi | 186.4174 46.20276 4.03 0.000 95.86163 276.9731
_cons | 3706.284 1861.555 1.99 0.046 57.70428 7354.864
-------------+----------------------------------------------------------------
sigma_u | 3548.098
sigma_e | 1664.3803
rho | .81964107 (fraction of variance due to u_i)
------------------------------------------------------------------------------
. estimates store random
. xtoverid
Test of overidentifying restrictions: fixed vs random effects
Cross-section time-series model: xtreg re robust cluster(country)
Sargan-Hansen statistic 0.277 Chi-sq(1) P-value = 0.5984
So, "RE" would be better.
But now what I want to do is to see is the effect of corruption on GDPpc for each panel or country that are 17. Thus to get it I considered the command :
regress gdppercapita cpi i.country1, robust and my result was:
. regress gdppercapita cpi i.country1, robust
Linear regression Number of obs = 264
F(17, 246) = 304.54
Prob > F = 0.0000
R-squared = 0.8871
Root MSE = 1664.4
---------------------------------------------------------------------------------
| Robust
gdppercapita | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
cpi | 179.3757 28.66853 6.26 0.000 122.9086 235.8428
|
country1 |
Bolivia | -11210.48 573.2138 -19.56 0.000 -12339.51 -10081.45
Brazil | -4950.039 715.173 -6.92 0.000 -6358.682 -3541.395
Chile | -5945.007 1482.088 -4.01 0.000 -8864.208 -3025.806
Colombia | -7667.335 730.9905 -10.49 0.000 -9107.133 -6227.536
Costa Rica | -8053.332 839.9772 -9.59 0.000 -9707.797 -6398.867
Dominican Rep. | -6624.862 731.7051 -9.05 0.000 -8066.068 -5183.656
Ecuador | -6946.394 603.4958 -11.51 0.000 -8135.072 -5757.716
El Salvador | -11079.91 634.8929 -17.45 0.000 -12330.43 -9829.387
Guatemala | -9865.383 580.6589 -16.99 0.000 -11009.08 -8721.686
Honduras | -12210.32 580.5106 -21.03 0.000 -13353.73 -11066.92
Mexico | -1950.287 622.7526 -3.13 0.002 -3176.895 -723.6802
Nicaragua | -12037.28 579.9553 -20.76 0.000 -13179.59 -10894.97
Panama | -2904.92 1025.237 -2.83 0.005 -4924.282 -885.5568
Paraguay | -8425.054 634.557 -13.28 0.000 -9674.912 -7175.196
Peru | -9102.088 778.4872 -11.69 0.000 -10635.44 -7568.738
Uruguay | -7608.453 1186.654 -6.41 0.000 -9945.751 -5271.155
|
_cons | 11409.83 1018.999 11.20 0.000 9402.753 13416.91
---------------------------------------------------------------------------------
Therefore, my specific question is whether the command used to analyze the effect for each panel is correct ? Also because in the first time when I perform the xtoverid test to decides FE or RE, the result was RE and the corruption´s coefficient has "positive"sign in RE model but then when I perform for each panel, each panel coefficient is "negative".
Thanks in advance.
Elizabeth.
I´m working with panel data for my thesis and it is a small panel data only 17 countries and 15 years. What I´m exactly doing is analyzing the effect that corruption has on gdppercapita. I also use other variables but they are considered as "control variables" . I started with a simple model where I estimated FE and then RE but I cluster the SEs in order to deal with heteroskedasticity and autocorrelation problems (as it was recommmened previously in one of my quesion in the forum) and then to decide which one would be better I used the command "xtoverid". You can see my commands
. xtreg gdppercapita cpi, fe cluster(country)
Fixed-effects (within) regression Number of obs = 264
Group variable: country1 Number of groups = 17
R-sq: within = 0.1327 Obs per group: min = 14
between = 0.4349 avg = 15.5
overall = 0.3896 max = 16
F(1,16) = 9.22
corr(u_i, Xb) = 0.1529 Prob > F = 0.0079
(Std. Err. adjusted for 17 clusters in country)
Robust
gdppercapita Coef. Std. Err. t P>t [95% Conf. Interval]
cpi 179.3757 59.06557 3.04 0.008 54.16224 304.5891
_cons 3996.204 2172.897 1.84 0.085 -610.1317 8602.54
sigma_u 3507.3843
sigma_e 1664.3803
rho .81620361 (fraction of variance due to u_i)
. estimates store fixed
. xtreg gdppercapita cpi, re cluster(country)
Random-effects GLS regression Number of obs = 264
Group variable: country1 Number of groups = 17
R-sq: Obs per group:
within = 0.1327 min = 14
between = 0.4349 avg = 15.5
overall = 0.3896 max = 16
Wald chi2(1) = 16.28
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0001
(Std. Err. adjusted for 17 clusters in country)
------------------------------------------------------------------------------
| Robust
gdppercapita | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
cpi | 186.4174 46.20276 4.03 0.000 95.86163 276.9731
_cons | 3706.284 1861.555 1.99 0.046 57.70428 7354.864
-------------+----------------------------------------------------------------
sigma_u | 3548.098
sigma_e | 1664.3803
rho | .81964107 (fraction of variance due to u_i)
------------------------------------------------------------------------------
. estimates store random
. xtoverid
Test of overidentifying restrictions: fixed vs random effects
Cross-section time-series model: xtreg re robust cluster(country)
Sargan-Hansen statistic 0.277 Chi-sq(1) P-value = 0.5984
So, "RE" would be better.
But now what I want to do is to see is the effect of corruption on GDPpc for each panel or country that are 17. Thus to get it I considered the command :
regress gdppercapita cpi i.country1, robust and my result was:
. regress gdppercapita cpi i.country1, robust
Linear regression Number of obs = 264
F(17, 246) = 304.54
Prob > F = 0.0000
R-squared = 0.8871
Root MSE = 1664.4
---------------------------------------------------------------------------------
| Robust
gdppercapita | Coef. Std. Err. t P>|t| [95% Conf. Interval]
----------------+----------------------------------------------------------------
cpi | 179.3757 28.66853 6.26 0.000 122.9086 235.8428
|
country1 |
Bolivia | -11210.48 573.2138 -19.56 0.000 -12339.51 -10081.45
Brazil | -4950.039 715.173 -6.92 0.000 -6358.682 -3541.395
Chile | -5945.007 1482.088 -4.01 0.000 -8864.208 -3025.806
Colombia | -7667.335 730.9905 -10.49 0.000 -9107.133 -6227.536
Costa Rica | -8053.332 839.9772 -9.59 0.000 -9707.797 -6398.867
Dominican Rep. | -6624.862 731.7051 -9.05 0.000 -8066.068 -5183.656
Ecuador | -6946.394 603.4958 -11.51 0.000 -8135.072 -5757.716
El Salvador | -11079.91 634.8929 -17.45 0.000 -12330.43 -9829.387
Guatemala | -9865.383 580.6589 -16.99 0.000 -11009.08 -8721.686
Honduras | -12210.32 580.5106 -21.03 0.000 -13353.73 -11066.92
Mexico | -1950.287 622.7526 -3.13 0.002 -3176.895 -723.6802
Nicaragua | -12037.28 579.9553 -20.76 0.000 -13179.59 -10894.97
Panama | -2904.92 1025.237 -2.83 0.005 -4924.282 -885.5568
Paraguay | -8425.054 634.557 -13.28 0.000 -9674.912 -7175.196
Peru | -9102.088 778.4872 -11.69 0.000 -10635.44 -7568.738
Uruguay | -7608.453 1186.654 -6.41 0.000 -9945.751 -5271.155
|
_cons | 11409.83 1018.999 11.20 0.000 9402.753 13416.91
---------------------------------------------------------------------------------
Therefore, my specific question is whether the command used to analyze the effect for each panel is correct ? Also because in the first time when I perform the xtoverid test to decides FE or RE, the result was RE and the corruption´s coefficient has "positive"sign in RE model but then when I perform for each panel, each panel coefficient is "negative".
Thanks in advance.
Elizabeth.
Comment