Hello everyone!
I have a problem with calculating the residual, the calculation following the steps below:
In each month t,I should:
1. firstly, use daily data from month t-2 through month t to run a FamaFrench 3 factor regression, with formula: excessreturn = b_cons + b_hml*hml + b_smb*smb + b_rmrf*rmrf,
2. define the residual of month t-2 to month t using the regression coefficients that are estimated in step 1,
3. calculate the sd and skewness of month t using the residual defined in step 2, only one sd and one skewness should be computedf or each month,
4. following the same steps for next month t+1.
For example, in jan1989, I run a FF regression using daily data for days from the first day of nov1988 through the end of jan1989, the regression coefficient are estimated, and the daily residuals are calculated using the regression coefficient, the sd and the skewness of jan 1989 are computed using the daily residual from nov1988 to jan1989. In feb1989, I run a FF regression using daily data for days from the first day of dec1988 through the end of feb1989, the regression coefficient are estimated, the residuals of dec1988 to feb1989, the sd and skewness of feb1989 are computed as above.
Many thanks for your help and time, I will be very grateful if you can give some tips!
My panel data contains 7 variables and sorted by date id: date(01.Oct.1988 to 30.Jun.2016) ym(monthly date) id(from 1 to 5883) rmrf smb hml excessreturn.
I have a problem with calculating the residual, the calculation following the steps below:
In each month t,I should:
1. firstly, use daily data from month t-2 through month t to run a FamaFrench 3 factor regression, with formula: excessreturn = b_cons + b_hml*hml + b_smb*smb + b_rmrf*rmrf,
2. define the residual of month t-2 to month t using the regression coefficients that are estimated in step 1,
3. calculate the sd and skewness of month t using the residual defined in step 2, only one sd and one skewness should be computedf or each month,
4. following the same steps for next month t+1.
For example, in jan1989, I run a FF regression using daily data for days from the first day of nov1988 through the end of jan1989, the regression coefficient are estimated, and the daily residuals are calculated using the regression coefficient, the sd and the skewness of jan 1989 are computed using the daily residual from nov1988 to jan1989. In feb1989, I run a FF regression using daily data for days from the first day of dec1988 through the end of feb1989, the regression coefficient are estimated, the residuals of dec1988 to feb1989, the sd and skewness of feb1989 are computed as above.
Many thanks for your help and time, I will be very grateful if you can give some tips!
My panel data contains 7 variables and sorted by date id: date(01.Oct.1988 to 30.Jun.2016) ym(monthly date) id(from 1 to 5883) rmrf smb hml excessreturn.
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input double(date ym id excessreturn rmrf smb hml) 10503 345 1 -.01936289646965491 -.01127306 .00525148 .0006878 10504 345 1 .004428615495805104 .00170627 -.00085576 -.00139754 10505 345 1 -.0004251 .00996818 -.00446347 .00140606 10506 345 1 -.0004254 .0059196 -.00249881 .00250139 10507 345 1 -.0004254 .00319251 .00030991 -.00277563 10510 345 1 -.0004223 -.00024731 .00422974 -.00149079 10511 345 1 -.0004216 -.00274863 .00377518 .00549557 10512 345 1 -.0004223 -.01161097 .00538493 .00050242 10513 345 1 -.0004223 .00748774 -.00172834 .00512555 10514 345 1 -.0004223 .00450467 -.00003376 .00478568 10517 345 1 .023616446896690534 .01022073 -.00470417 .00443819 10518 345 1 .013620751277013725 -.0011541 .00067627 -.00090353 10519 345 1 .013474597771965517 .00363072 .00327984 -.00298672 10520 345 1 -.0004251 .00043836 -.00042181 .00095446 10521 345 1 .004160660287584015 -.00152961 .0025553 .0011501 10524 345 1 .004094270973417762 -.00565686 .00289626 -.00235665 10525 345 1 -.00491995430789627 -.00111718 -.00253788 .00240047 10526 345 1 -.0004223 .00032483 -.0014962 .00228125 10527 345 1 .017744790651005753 .00044753 .00076314 .00001995 10528 345 1 .008496248264910458 .00309713 .00082262 .00215505 10531 345 1 -.0004216 -.00123408 .00574452 .00172679 10532 346 1 -.0004251 .00287933 -.00061362 .00232 10533 346 1 -.0004233 -.00697585 .00488589 .00050676 10534 346 1 -.0004244 -.00285437 .00281202 .0029033 10535 346 1 .004018632959910915 -.00192175 .0009521 .00358065 10538 346 1 -.0004254 -.00776155 .0027741 .00311697 10539 346 1 -.0004264 .00952688 -.00659687 .00322087 10540 346 1 -.0004254 -.00755174 .00424434 .00203433 10541 346 1 -.0004244 .0000658 -.00040594 .00213749 10542 346 1 -.0004227 -.01219847 .00586826 .00206838 10545 346 1 -.013649725532307035 -.00454815 -.00256307 .00250378 10546 346 1 -.0004233 .00395039 .00248942 .00142837 10547 346 1 -.0004213 .00237563 -.00113014 .00247123 10548 346 1 -.0004223 .00695646 -.00743721 -.00091841 10549 346 1 -.0004244 -.00040684 .00169483 .00343632 10552 346 1 .004060976614823962 -.00631036 .00254483 -.00003972 10553 346 1 -.004886662993443917 .00421284 -.00169779 .00349698 10554 346 1 -.000424 .00715559 -.00209694 .00426515 10555 346 1 -.004908076614824184 -.00287966 .0015931 .00042118 10556 346 1 -.013841080905465748 -.02226113 .00126729 -.00038323 10559 346 1 -.0004548 -.00686149 .00134545 .00068337 10560 346 1 -.0050233243520851146 .00304422 -.00087426 -.00150591 10561 346 1 -.0004606 .00311911 .00006603 .00334213 10562 347 1 -.005045560287584237 -.00880611 -.00284232 .00227736 10563 347 1 -.005018397581225804 -.00939757 -.00306623 -.00021765 10566 347 1 -.0004585 -.00323499 -.00183136 .00373087 10567 347 1 -.00966786949185222 .00212448 -.00235887 .00124775 10568 347 1 -.005130805532577441 .00061133 -.00497766 -.0044441 10569 347 1 -.005102141236861527 -.00950524 -.00064092 .00103131 10570 347 1 -.005172627701375276 -.00722724 -.00339905 .00152378 10573 347 1 -.005192565455980971 .00015278 -.00530367 -.00236584 10574 347 1 -.0004548 .00223309 .00088146 .00437897 10575 347 1 -.005164832368107975 -.00032592 -.00276482 .00010165 10576 347 1 -.0004575 .00387507 -.00047641 -.00151807 10577 347 1 .00905806926717472 .00552013 -.00129807 .00101304 10580 347 1 -.005191265455980971 -.00128961 -7.196e-06 .00584483 10581 347 1 -.0004544 .00347369 -.0033825 -.00407795 10582 347 1 -.0004565 -.00266647 -.00067593 -.00204654 10583 347 1 -.0004551 -.00176227 .0036615 -.00504651 10584 347 1 -.0004517 .00185695 -.00313413 .00019805 10589 347 1 -.0004521 .00926918 -.00593432 -.00186907 10590 347 1 -.0004534 .00813243 -.00295587 -.00200299 10591 347 1 -.0004575 -.00457141 .00446324 .00128521 10595 348 1 -.0004603 -.00625428 .00348006 .00297693 10596 348 1 -.009930748234827456 .00525955 -.0027392 -.00272645 10597 348 1 -.0004603 .00329548 -.00122743 -.00069683 10598 348 1 .009101095144415997 .00577624 -.00208543 -.00008884 10601 348 1 -.0004593 .0099526 -.00551761 -.00026279 10602 348 1 .009059031733438961 .00179973 .00354946 .00461995 10603 348 1 -.0004603 -.00075754 .00440392 .00339012 10604 348 1 -.0004593 .00819852 -.00007103 .00246756 10605 348 1 -.0004593 .0060607 .0023039 -.00229719 10608 348 1 .004205411787819446 .00513847 -.00015631 .00334099 10609 348 1 -.0004613 -.00229445 .00057371 -.00277521 10610 348 1 -.0004613 .01093528 -.00588377 -.00158704 10611 348 1 .027600298631141437 .00921167 -.00284583 -.00459487 10612 348 1 -.0004613 .00313551 -.00084835 -.00063124 10615 348 1 .013138266298920526 .00374158 .00260237 -.00339525 10616 348 1 -.0004623 .00752605 -.00519193 .00170633 10617 348 1 -.0004617 -.00090837 .00317521 .00025433 10618 348 1 -.0004613 .00960258 -.00631583 .0045522 10619 348 1 .008546441027445393 .02269427 -.00559572 -.00016106 10622 348 1 .07504929897242767 .01651668 -.00309322 -.00189771 10623 348 1 -.0004613 .00320827 -.0016308 .00090841 10624 349 1 -.0004603 -.0049795 .00361908 -.00676923 10625 349 1 -.004567342497081826 .00225093 .00262478 .00050828 10626 349 1 -.0004599 .01362544 -.0009618 .00026414 10629 349 1 -.0004603 -.01070708 .00748479 -.00392056 10630 349 1 -.0004613 .01264815 -.00663474 -.00156815 10631 349 1 .003662679857614035 .0107934 -.00043577 .00168113 10632 349 1 -.0004613 -.00688215 .00523801 .00368968 10633 349 1 -.004567342497081826 -.01046152 .00620448 .00326649 10636 349 1 -.004626690171904928 -.01071695 .00314722 -.00381311 10637 349 1 -.0004593 .00668561 -.00352879 .00087794 10638 349 1 -.0004596 -.00106768 .00325114 .0002309 10639 349 1 .0037255299912816687 -.0052176 .00625345 -.00239602 10640 349 1 -.008750670029519073 .00303642 -.00170061 -.00133237 10643 349 1 -.0004579 .00946149 -.00533087 .00049292 10644 349 1 -.0004572 -.00169463 .00397498 .00187004 10645 349 1 -.004658732435981501 -.01182387 .00857389 .00020951 end format %td date format %tm ym
Comment