Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #46
    I tried it just to see the rsults of the ovtest, it's still significant

    Code:
     reg ROA i.CSR Risk c.Size##c.Size ib2.Industry,vce(cluster Companyscode)
    
    Linear regression                               Number of obs     =        139
                                                    F(7, 27)          =       2.85
                                                    Prob > F          =     0.0231
                                                    R-squared         =     0.6765
                                                    Root MSE          =     .42571
    
                               (Std. Err. adjusted for 28 clusters in Companyscode)
    -------------------------------------------------------------------------------
                  |               Robust
              ROA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    --------------+----------------------------------------------------------------
            1.CSR |   .0640246   .0534338     1.20   0.241    -.0456126    .1736618
             Risk |   .6607711   .2967091     2.23   0.034     .0519743    1.269568
             Size |    2.07716   1.024637     2.03   0.053    -.0252224    4.179542
                  |
    c.Size#c.Size |  -.1113785   .0534507    -2.08   0.047    -.2210504   -.0017067
                  |
         Industry |
               1  |  -.3233247   .1391975    -2.32   0.028    -.6089344    -.037715
               3  |  -.1931089   .1427413    -1.35   0.187    -.4859899    .0997721
               4  |  -.2692938    .148752    -1.81   0.081    -.5745076      .03592
                  |
            _cons |  -9.408673   4.788201    -1.96   0.060    -19.23325    .4159049
    -------------------------------------------------------------------------------
    
    . estat ovtest
    
    Ramsey RESET test using powers of the fitted values of ROA
           Ho:  model has no omitted variables
                     F(3, 128) =    829.19
                      Prob > F =      0.0000
    
    .

    Comment


    • #47
      Jihad:
      what if you log the dependent variable (ROA)?
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #48
        All values of ROA become negative because they represent a percentage. I'm sharing an extract from my data concerning ROA. and result of regression when logging ROA.
        Code:
         
        Company's code Year CSR ROA
        1 2012 0 0.019338
        1 2013 0 0.267034
        1 2014 0 0.154225
        1 2015 0 0.180171
        1 2016 0 0.041677
        2 2012 0 0.013732
        2 2013 0 -0.02692
        2 2014 0 0.269017
        2 2015 0 0.087709
        2 2016 0 0.142721
        Code:
        reg logROA i.CSR Risk Size ib2.Industry,vce(cluster Companyscode)
        Linear regression Number of obs = 135
        F(6, 27) = 2.99
        Prob > F = 0.0227
        R-squared = 0.1279
        Root MSE = .54202
        (Std. Err. adjusted for 28 clusters in Companyscode)
        Robust
        logROA Coef. Std. Err. t P>|t| [95% Conf. Interval]
        1.CSR .0652971 .1033878 0.63 0.533 -.1468372 .2774314
        Risk .1659696 .0808908 2.05 0.050 -4.50e-06 .3319438
        Size -.0332269 .0549726 -0.60 0.551 -.1460213 .0795675
        Industry
        1 -.2474763 .1242313 -1.99 0.057 -.5023779 .0074253
        3 -.027201 .1548339 -0.18 0.862 -.3448939 .2904919
        4 -.2775045 .144188 -1.92 0.065 -.5733539 .0183449
        _cons -1.015902 .4692717 -2.16 0.039 -1.978768 -.0530359
        5 . estat ovtest
        Ramsey RESET test using powers of the fitted values of logROA
        Ho: model has no omitted variables
        F(3, 125) = 2.07
        Prob > F = 0.1070
        Even if the ovtest is no longer significant, but also the relationship is not significant

        Comment


        • #49
          Jihad:
          the lack of statistical significance in not good/bad in itself: it's just a matter of fact (by the way, your sample is not that large).
          Please also note that your previous "significant" relationships were, in fact, unreliable due to model misspecification.
          I would report those results, along with some concisderations on the sample size and "more research is needed".
          Last but by no means least, please keep on using CODE delimiters to share codes/outcome/results with interested listers. Thanks.
          Kind regards,
          Carlo
          (Stata 19.0)

          Comment


          • #50
            Is it normal to have all values of depvar negative?
            If I want to report descriptive statistics, I will report about log ROA or ROA ?

            Comment


            • #51
              Jihad:
              if ROA is expressed in percentage, logging a number which<1 in its original metric gives back a negative number.
              That said, I would report ROA (no ln(ROA)) in descriptive statistics.
              Kind regards,
              Carlo
              (Stata 19.0)

              Comment


              • #52
                And I must say that In the regression I used the logROA not ROA to avoid OVB ?

                Comment


                • #53
                  Correct.
                  Kind regards,
                  Carlo
                  (Stata 19.0)

                  Comment


                  • #54
                    Please Carlo give me a reference a book or an article that give this solution. I must add it to my report to defend the results. THANK YOU for your big help

                    Comment


                    • #55
                      Jihad:
                      there's no universal solution.
                      In your case, logging the dependent variable produces no evidence of a weak specification of your regression model according to -estat ovtest-: that's all.
                      Chapter 8 of https://www.amazon.com/Introduction-.../dp/0321278879 covers this issue (pages: 267-276).
                      Kind regards,
                      Carlo
                      (Stata 19.0)

                      Comment


                      • #56
                        I tried ovtest and linktest and have contradictory results

                        Code:
                          reg LOGROA i.CSR Size Risk Age ib2.Industry,vce(cluster Companyscode)
                        
                        Linear regression                               Number of obs     =        162
                                                                        F(7, 27)          =       2.21
                                                                        Prob > F          =     0.0654
                                                                        R-squared         =     0.0372
                                                                        Root MSE          =     .56907
                        
                                                  (Std. Err. adjusted for 28 clusters in Companyscode)
                        ------------------------------------------------------------------------------
                                     |               Robust
                              LOGROA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                        -------------+----------------------------------------------------------------
                               1.CSR |   .1160269    .093839     1.24   0.227    -.0765148    .3085686
                                Size |  -.0381379    .071132    -0.54   0.596    -.1840888     .107813
                                Risk |    .026861   .0184761     1.45   0.158    -.0110489    .0647709
                                 Age |  -.0002112   .0020855    -0.10   0.920    -.0044903     .004068
                                     |
                            Industry |
                                  1  |  -.2277112   .1562495    -1.46   0.157    -.5483087    .0928862
                                  3  |  -.1319128    .217863    -0.61   0.550    -.5789309    .3151052
                                  4  |  -.1931123   .1679689    -1.15   0.260     -.537756    .1515314
                                     |
                               _cons |  -.9144854   .6376664    -1.43   0.163    -2.222869     .393898
                        ------------------------------------------------------------------------------
                        
                        . estat ovtest
                        
                        Ramsey RESET test using powers of the fitted values of LOGROA
                               Ho:  model has no omitted variables
                                         F(3, 151) =      2.86
                                          Prob > F =      0.0387
                        
                        . linktest
                        
                              Source |       SS           df       MS      Number of obs   =       162
                        -------------+----------------------------------   F(2, 159)       =      4.07
                               Model |  2.52183304         2  1.26091652   Prob > F        =    0.0189
                            Residual |  49.2791343       159  .309931662   R-squared       =    0.0487
                        -------------+----------------------------------   Adj R-squared   =    0.0367
                               Total |  51.8009673       161  .321745139   Root MSE        =    .55672
                        
                        ------------------------------------------------------------------------------
                              LOGROA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                        -------------+----------------------------------------------------------------
                                _hat |   10.01324   6.529626     1.53   0.127    -2.882749    22.90922
                              _hatsq |   3.428235   2.478896     1.38   0.169    -1.467575    8.324045
                               _cons |   5.868018   4.279266     1.37   0.172    -2.583516    14.31955
                        ------------------------------------------------------------------------------
                        
                        .
                        So what should I conclude ?

                        Comment


                        • #57
                          Jihad:
                          the -linktest- usually tests the (mis)specification of the dependent variable: there's no evidence of that in your case;
                          - estat ovtest- check whether a misspecification exists among the predictors (as it would seem in you case).
                          You have increased your sample size, but your pooled OLS (see the F-test-related p-value) does not seem to differ from
                          Code:
                          mean LOGROA
                          You can try a different model specification, repeat -estat ovtest- and see what happens.
                          Kind regards,
                          Carlo
                          (Stata 19.0)

                          Comment


                          • #58
                            Code:
                            reg MeanlogROA i.CSR Size Risk Age ib2.Industry,vce(cluster Companyscode)
                            
                            Linear regression                               Number of obs     =        162
                                                                            F(7, 27)          =       2.21
                                                                            Prob > F          =     0.0654
                                                                            R-squared         =     0.0372
                                                                            Root MSE          =     .56907
                            
                                                      (Std. Err. adjusted for 28 clusters in Companyscode)
                            ------------------------------------------------------------------------------
                                         |               Robust
                              MeanlogROA |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                            -------------+----------------------------------------------------------------
                                   1.CSR |   .1160269    .093839     1.24   0.227    -.0765148    .3085686
                                    Size |  -.0381379    .071132    -0.54   0.596    -.1840888     .107813
                                    Risk |    .026861   .0184761     1.45   0.158    -.0110489    .0647709
                                     Age |  -.0002112   .0020855    -0.10   0.920    -.0044903     .004068
                                         |
                                Industry |
                                      1  |  -.2277112   .1562495    -1.46   0.157    -.5483087    .0928862
                                      3  |  -.1319128    .217863    -0.61   0.550    -.5789309    .3151052
                                      4  |  -.1931123   .1679689    -1.15   0.260     -.537756    .1515314
                                         |
                                   _cons |  -.9144854   .6376664    -1.43   0.163    -2.222869     .393898
                            ------------------------------------------------------------------------------
                            
                            . estat ovtest
                            
                            Ramsey RESET test using powers of the fitted values of MeanlogROA
                                   Ho:  model has no omitted variables
                                             F(3, 151) =      2.86
                                              Prob > F =      0.0387
                            it's still significant, apparently, there is no model that fits my data

                            Comment


                            • #59
                              Jihad:
                              what I meant in my previous reply was exactly:
                              Code:
                              mean LOGROA
                              not the regression code you wrote!
                              Kind regards,
                              Carlo
                              (Stata 19.0)

                              Comment


                              • #60
                                I'm sorry for the misunderstanding.

                                Here what I get

                                Code:
                                 mean LOGROA
                                
                                Mean estimation                   Number of obs   =        163
                                
                                --------------------------------------------------------------
                                             |       Mean   Std. Err.     [95% Conf. Interval]
                                -------------+------------------------------------------------
                                      LOGROA |  -1.377567   .0444684      -1.46538   -1.289755
                                --------------------------------------------------------------

                                Comment

                                Working...
                                X