Dear Statalist Community
This should be my very last questions for statalist community. Thank you every experts who have helped me this far. I appreciate it a lot.
I am trying to explain the reason why the correlation between my dependent variable (government expenditure as a % of GDP) and independent variable (immigration) is negatively correlated, while the estimated coefficients are positive (in all cases when I include or exclude each control variables.)
1. I try to investigate by using
and found no outliers. I wonder whether there are other ways in which I can find the reason for this?
2. I also experiment with another regression that use log on all of my variables. I would like to know whether I can interpret that in terms of one percentage change in standard deviation? eg. one standard deviation in independent variable contributes to ___% of one standard deviation increase increase in dependent variable.

+------------------------+
| obs: govex_~p immi |
|------------------------|
| 901. 10.20876 . |
| 586. 10.2687 . |
| 585. 10.3964 . |
| 902. 10.46668 . |
| 722. 10.53066 . |
+------------------------+
+-------------------------+
| 879. 27.4907 61872 |
| 871. 27.63227 32272 |
| 369. 27.68548 . |
| 182. 27.69099 28223 |
| 205. 27.93502 51800 |
+-------------------------+
regression without log
Fixed-effects (within) regression Number of obs = 657
Group variable: country Number of groups = 33
R-sq: within = 0.2989 Obs per group: min = 2
between = 0.0395 avg = 19.9
overall = 0.0627 max = 29
F(32,32) = .
corr(u_i, Xb) = -0.7913 Prob > F = .
(Std. Err. adjusted for 33 clusters in country)
----------------------------------------------------------------------------------
| Robust
govex_gdp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
immi | 1.14e-06 5.01e-07 2.28 0.029 1.24e-07 2.16e-06
depratio | .0329021 .0603795 0.54 0.590 -.0900868 .1558911
unem_perlab | .1200443 .0409341 2.93 0.006 .0366643 .2034244
urbanpop_pertot | .2526613 .0645373 3.91 0.000 .1212032 .3841194
pop | 7.90e-08 1.57e-07 0.50 0.618 -2.40e-07 3.98e-07
femalepop_pertot | -.9128621 1.047256 -0.87 0.390 -3.046053 1.220329
|
year |
1982 | -.0275117 .1441005 -0.19 0.850 -.3210348 .2660114
1983 | .0287356 .3412937 0.08 0.933 -.666457 .7239282
1984 | -.672402 .4074508 -1.65 0.109 -1.502352 .1575481
1989 | -1.164444 .5968829 -1.95 0.060 -2.380255 .0513666
1990 | -.7825131 .6641094 -1.18 0.247 -2.13526 .5702335
1991 | -.3335672 .7901333 -0.42 0.676 -1.943016 1.275882
1992 | -.4937047 .800642 -0.62 0.542 -2.124559 1.13715
1993 | -.1212492 .7635012 -0.16 0.875 -1.67645 1.433952
1994 | -.8561286 .7242583 -1.18 0.246 -2.331394 .6191373
1995 | -.5426904 .8170002 -0.66 0.511 -2.206865 1.121485
1996 | -.8923355 .8015554 -1.11 0.274 -2.52505 .7403794
1997 | -1.156174 .8138863 -1.42 0.165 -2.814007 .5016577
1998 | -1.249869 .8070755 -1.55 0.131 -2.893828 .3940899
1999 | -1.177472 .8301466 -1.42 0.166 -2.868425 .5134814
2000 | -1.617467 .8595532 -1.88 0.069 -3.36832 .1333854
2001 | -1.411849 .8676217 -1.63 0.113 -3.179137 .3554382
2002 | -1.143768 .8905438 -1.28 0.208 -2.957747 .6702102
2003 | -.8068445 .9449567 -0.85 0.400 -2.731658 1.117969
2004 | -1.323295 .8930714 -1.48 0.148 -3.142422 .4958319
2005 | -1.32398 .9220267 -1.44 0.161 -3.202087 .5541268
2006 | -1.543219 .9286263 -1.66 0.106 -3.434768 .3483313
2007 | -1.860672 .9506458 -1.96 0.059 -3.797074 .0757304
2008 | -1.130692 .9602998 -1.18 0.248 -3.086759 .8253748
2009 | .1310738 .9863769 0.13 0.895 -1.87811 2.140258
2010 | -.3822114 .9845546 -0.39 0.700 -2.387684 1.623261
2011 | -1.07942 1.007688 -1.07 0.292 -3.132013 .9731725
2012 | -1.391096 1.023083 -1.36 0.183 -3.475048 .6928561
2013 | -1.530977 1.035502 -1.48 0.149 -3.640225 .5782712
|
_cons | 44.80689 54.43654 0.82 0.417 -66.0767 155.6905
-----------------+----------------------------------------------------------------
sigma_u | 4.7367037
sigma_e | 1.38224
rho | .92152662 (fraction of variance due to u_i)
----------------------------------------------------------------------------------
regression with log

Thank you
Guest
This should be my very last questions for statalist community. Thank you every experts who have helped me this far. I appreciate it a lot.
I am trying to explain the reason why the correlation between my dependent variable (government expenditure as a % of GDP) and independent variable (immigration) is negatively correlated, while the estimated coefficients are positive (in all cases when I include or exclude each control variables.)
1. I try to investigate by using
Code:
extremes govex_gdp immi
2. I also experiment with another regression that use log on all of my variables. I would like to know whether I can interpret that in terms of one percentage change in standard deviation? eg. one standard deviation in independent variable contributes to ___% of one standard deviation increase increase in dependent variable.
Code:
. extremes govex_gdp immi
| obs: govex_~p immi |
|------------------------|
| 901. 10.20876 . |
| 586. 10.2687 . |
| 585. 10.3964 . |
| 902. 10.46668 . |
| 722. 10.53066 . |
+------------------------+
+-------------------------+
| 879. 27.4907 61872 |
| 871. 27.63227 32272 |
| 369. 27.68548 . |
| 182. 27.69099 28223 |
| 205. 27.93502 51800 |
+-------------------------+
regression without log
Code:
xtreg govex_gdp immi depratio unem_perlab urbanpop_pertot pop femalepop_pertot i.year ,fe cluster (country)
Group variable: country Number of groups = 33
R-sq: within = 0.2989 Obs per group: min = 2
between = 0.0395 avg = 19.9
overall = 0.0627 max = 29
F(32,32) = .
corr(u_i, Xb) = -0.7913 Prob > F = .
(Std. Err. adjusted for 33 clusters in country)
----------------------------------------------------------------------------------
| Robust
govex_gdp | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------+----------------------------------------------------------------
immi | 1.14e-06 5.01e-07 2.28 0.029 1.24e-07 2.16e-06
depratio | .0329021 .0603795 0.54 0.590 -.0900868 .1558911
unem_perlab | .1200443 .0409341 2.93 0.006 .0366643 .2034244
urbanpop_pertot | .2526613 .0645373 3.91 0.000 .1212032 .3841194
pop | 7.90e-08 1.57e-07 0.50 0.618 -2.40e-07 3.98e-07
femalepop_pertot | -.9128621 1.047256 -0.87 0.390 -3.046053 1.220329
|
year |
1982 | -.0275117 .1441005 -0.19 0.850 -.3210348 .2660114
1983 | .0287356 .3412937 0.08 0.933 -.666457 .7239282
1984 | -.672402 .4074508 -1.65 0.109 -1.502352 .1575481
1989 | -1.164444 .5968829 -1.95 0.060 -2.380255 .0513666
1990 | -.7825131 .6641094 -1.18 0.247 -2.13526 .5702335
1991 | -.3335672 .7901333 -0.42 0.676 -1.943016 1.275882
1992 | -.4937047 .800642 -0.62 0.542 -2.124559 1.13715
1993 | -.1212492 .7635012 -0.16 0.875 -1.67645 1.433952
1994 | -.8561286 .7242583 -1.18 0.246 -2.331394 .6191373
1995 | -.5426904 .8170002 -0.66 0.511 -2.206865 1.121485
1996 | -.8923355 .8015554 -1.11 0.274 -2.52505 .7403794
1997 | -1.156174 .8138863 -1.42 0.165 -2.814007 .5016577
1998 | -1.249869 .8070755 -1.55 0.131 -2.893828 .3940899
1999 | -1.177472 .8301466 -1.42 0.166 -2.868425 .5134814
2000 | -1.617467 .8595532 -1.88 0.069 -3.36832 .1333854
2001 | -1.411849 .8676217 -1.63 0.113 -3.179137 .3554382
2002 | -1.143768 .8905438 -1.28 0.208 -2.957747 .6702102
2003 | -.8068445 .9449567 -0.85 0.400 -2.731658 1.117969
2004 | -1.323295 .8930714 -1.48 0.148 -3.142422 .4958319
2005 | -1.32398 .9220267 -1.44 0.161 -3.202087 .5541268
2006 | -1.543219 .9286263 -1.66 0.106 -3.434768 .3483313
2007 | -1.860672 .9506458 -1.96 0.059 -3.797074 .0757304
2008 | -1.130692 .9602998 -1.18 0.248 -3.086759 .8253748
2009 | .1310738 .9863769 0.13 0.895 -1.87811 2.140258
2010 | -.3822114 .9845546 -0.39 0.700 -2.387684 1.623261
2011 | -1.07942 1.007688 -1.07 0.292 -3.132013 .9731725
2012 | -1.391096 1.023083 -1.36 0.183 -3.475048 .6928561
2013 | -1.530977 1.035502 -1.48 0.149 -3.640225 .5782712
|
_cons | 44.80689 54.43654 0.82 0.417 -66.0767 155.6905
-----------------+----------------------------------------------------------------
sigma_u | 4.7367037
sigma_e | 1.38224
rho | .92152662 (fraction of variance due to u_i)
----------------------------------------------------------------------------------
regression with log
Thank you
Guest
Comment