Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • xtabond2 : Hansen test of overid. restrictions

    Hello Dear Stata user's,

    I'm using STATA command xtabond2 and system GMM for my very first project. According to Arellano and Bond (1991), Arellano and Bover (1995) and Blundell and Bond (1998), two necessary tests (Sargan/Hansen and AR2) should be used.
    Based on my reading, Sargan and Hansen are used to test the overall validity of the instruments.

    My question is : if we rely on the results of the hansen test, can we validate the instruments?

    The results for sargan and hansen tests are below:

    .
    Arellano-Bond test for AR(1) in first differences: z = -2.50 Pr > z = 0.012
    Arellano-Bond test for AR(2) in first differences: z = -0.19 Pr > z = 0.849

    Sargan test of overid. restrictions: chi2(137) = 183.79 Prob > chi2 = 0.005
    (Not robust, but not weakened by many instruments.)

    Hansen test of overid. restrictions: chi2(137) = 0.00 Prob > chi2 = 1.000
    (Robust, but can be weakened by many instruments.)


    Difference-in-Hansen tests of exogeneity of instrument subsets:
    GMM instruments for levels

    Hansen test excluding group: chi2(123) = 0.00 Prob > chi2 = 1.000
    Difference (null H = exogenous): chi2(14) = 0.00 Prob > chi2 = 1.000



  • #2
    The p-value of your Hansen test (1.000) together with the large number of degrees of freedoms (137) indicates that your estimates are likely suffering from the too-many-instruments problem. Please read through the following paper to make yourself familiar with this and other potential pitfalls when estimating dynamic panel models with GMM:
    https://www.kripfganz.de/stata/

    Comment


    • #3
      Hello Sebastian,

      Thank you for your answer.

      I 'll read it for better understanding.

      Best regards.

      Comment


      • #4
        Dear All,

        I run xtabond2 command to solve endogeneity problem in my regression model. According to the results, there is no second order autocorrelation and difference Hansen tests for GMM and IV are confirming the exogeneity of instrument subsets. Also, the coefficients and significancy levels are in accordance with the theory. However, p value of Hansen test of overid. restrictions is 0.011. Could you please tell me possible ways to transform my model below to solve this problem?

        Code:
        xtabond2 TOBINSQ_w L.TOBINSQ_w ESGSCORE SIZE_w LEV_w ROA_w ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10 ICBIC11 YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10, noconstant gmm(L.(TOBINSQ_w ESGSCORE SIZE_w LEV_w ROA_w), collapse) iv(ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10 ICBIC11 YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10) twostep robust small orthogonal
        Code:
        Dynamic panel-data estimation, two-step system GMM
        ------------------------------------------------------------------------------
        Group variable: ID                              Number of obs      =      3260
        Time variable : YEAR                            Number of groups   =       625
        Number of instruments = 64                      Obs per group: min =         1
        F(24, 625)    =   1299.23                                      avg =      5.22
        Prob > F      =     0.000                                      max =         9
        ------------------------------------------------------------------------------
                     |              Corrected
           TOBINSQ_w |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
        -------------+----------------------------------------------------------------
           TOBINSQ_w |
                 L1. |   .6416167   .0633606    10.13   0.000     .5171913     .766042
                     |
            ESGSCORE |   .0039574   .0014761     2.68   0.008     .0010586    .0068561
              SIZE_w |  -.0719947   .0274938    -2.62   0.009    -.1259861   -.0180033
               LEV_w |   .4354721   .2204205     1.98   0.049     .0026177    .8683265
               ROA_w |   .0295865   .0076507     3.87   0.000     .0145623    .0446107
              ICBIC2 |  -.1427394   .1762176    -0.81   0.418    -.4887897    .2033108
              ICBIC3 |  -.0375606   .1562704    -0.24   0.810    -.3444393    .2693181
              ICBIC4 |  -.1138193   .1956555    -0.58   0.561    -.4980411    .2704024
              ICBIC5 |  -.2603883    .173164    -1.50   0.133    -.6004421    .0796654
              ICBIC6 |  -.0878802   .1550526    -0.57   0.571    -.3923673     .216607
              ICBIC7 |   .1304957   .1575019     0.83   0.408    -.1788014    .4397928
              ICBIC8 |  -.1732675   .1665113    -1.04   0.298    -.5002568    .1537219
              ICBIC9 |   -.217849   .1653956    -1.32   0.188    -.5426475    .1069494
             ICBIC10 |  -.1670711   .1793827    -0.93   0.352    -.5193369    .1851947
             ICBIC11 |  -.1700764   .1832575    -0.93   0.354    -.5299514    .1897986
               YEAR2 |   1.254697   .3762052     3.34   0.001     .5159179    1.993477
               YEAR3 |   .9854767   .3700407     2.66   0.008     .2588031     1.71215
               YEAR4 |    1.12928   .3686532     3.06   0.002     .4053312    1.853229
               YEAR5 |   1.074168   .3645176     2.95   0.003     .3583407    1.789996
               YEAR6 |    1.11878   .3663088     3.05   0.002     .3994351    1.838125
               YEAR7 |   1.102081   .3682072     2.99   0.003     .3790082    1.825154
               YEAR8 |   1.075689   .3697049     2.91   0.004     .3496752    1.801703
               YEAR9 |    1.13531   .3676124     3.09   0.002     .4134052    1.857215
              YEAR10 |   1.024656   .3687495     2.78   0.006     .3005175    1.748794
        ------------------------------------------------------------------------------
        Instruments for orthogonal deviations equation
          Standard
            FOD.(ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10
            ICBIC11 YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10)
          GMM-type (missing=0, separate instruments for each period unless collapsed)
            L(1/9).(L.TOBINSQ_w L.ESGSCORE L.SIZE_w L.LEV_w L.ROA_w) collapsed
        Instruments for levels equation
          Standard
            ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10 ICBIC11
            YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10
          GMM-type (missing=0, separate instruments for each period unless collapsed)
            D.(L.TOBINSQ_w L.ESGSCORE L.SIZE_w L.LEV_w L.ROA_w) collapsed
        ------------------------------------------------------------------------------
        Arellano-Bond test for AR(1) in first differences: z =  -5.50  Pr > z =  0.000
        Arellano-Bond test for AR(2) in first differences: z =  -1.81  Pr > z =  0.071
        ------------------------------------------------------------------------------
        Sargan test of overid. restrictions: chi2(40)   =  86.19  Prob > chi2 =  0.000
          (Not robust, but not weakened by many instruments.)
        Hansen test of overid. restrictions: chi2(40)   =  63.33  Prob > chi2 =  0.011
          (Robust, but weakened by many instruments.)
        
        Difference-in-Hansen tests of exogeneity of instrument subsets:
          GMM instruments for levels
            Hansen test excluding group:     chi2(35)   =  54.41  Prob > chi2 =  0.019
            Difference (null H = exogenous): chi2(5)    =   8.92  Prob > chi2 =  0.112
          iv(ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10 ICBIC11 YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10)
            Hansen test excluding group:     chi2(21)   =  35.05  Prob > chi2 =  0.028
            Difference (null H = exogenous): chi2(19)   =  28.28  Prob > chi2 =  0.078

        Comment


        • #5
          Note that there is a potentially severe bug in xtabond2 that produces incorrect estimates when used with the orthogonal option; see slides 70 and 71 of my 2019 London Stata Conference presentation. I recommend to use the xtdpdgmm command instead.
          https://www.kripfganz.de/stata/

          Comment


          • #6
            Dear Sebastian,

            First of all thank you very much for your fast reply. I have tried to replicate my model using xtdpdgmm instead of xtbond2 command by following the posts on XTDPDGMM: new Stata command for GMM estimation of linear (dynamic) panel data models. However, because there have been many updates over time, I could not achieve to find the right syntax. Is it possible you to write the right syntax with xtdpdgmm command for the model below? If not, I would also appreciate an example with xtdpdgmm command including year and industry dummies and collapse, twostep, robust, small, orthogonal options.

            Code:
             
             xtabond2 TOBINSQ_w L.TOBINSQ_w ESGSCORE SIZE_w LEV_w ROA_w ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10 ICBIC11 YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10, noconstant gmm(L.(TOBINSQ_w ESGSCORE SIZE_w LEV_w ROA_w), collapse) iv(ICBIC2 ICBIC3 ICBIC4 ICBIC5 ICBIC6 ICBIC7 ICBIC8 ICBIC9 ICBIC10 ICBIC11 YEAR2 YEAR3 YEAR4 YEAR5 YEAR6 YEAR7 YEAR8 YEAR9 YEAR10) twostep robust small orthogonal
            ICBIC represents industry dummies and year represents year dummies, I dropped ICBIC1 and YEAR1 manually.

            Thank you in advance

            Comment


            • #7
              Dear All,

              I would appreciate an example with xtdpdgmm command including year and industry dummies and collapse, twostep, robust, small, orthogonal options as in xtabond2 command.

              Comment


              • #8
                See:https://www.stata.com/meeting/uk19/s..._kripfganz.pdf
                Sebastian Kripfganz has posted this link many times

                Comment


                • #9
                  Dear Sebastian,
                  I have studied both your presentation and the posts on the link you sent. Now I am trying to apply the sequential model selection process in order to find the most suitable model specification. I have already applied the first 3 steps as you explained in your presentation. Before moving to the 4.step, I need your comment to be sure that I am in the right way.
                  I run 20 models with different lags of both dependent and independent variables. Then, I used the MMSC to compare the models which pass the specification tests. The result is as follows:

                  Code:
                         Model | ngroups          J  nmom  npar   MMSC-AIC   MMSC-BIC  MMSC-HQIC
                  -------------+----------------------------------------------------------------
                             . |     625    38.0683    49    18   -23.9317  -161.5020   -78.5413
                       model10 |     454    43.6310    48    16   -20.3690  -152.1481   -73.4483
                        model9 |     440    33.4082    47    18   -24.5918  -143.1082   -72.3942
                        model8 |     440    29.7748    47    19   -26.2252  -140.6549   -72.3792
                        model7 |     440    28.6277    47    20   -25.3723  -135.7152   -69.8780
                        model6 |     440    28.6205    47    21   -23.3795  -129.6356   -66.2368
                        model5 |     440    25.9056    47    22   -24.0944  -126.2638   -65.3034
                        model4 |     440    25.5041    47    23   -22.4959  -120.5785   -62.0565
                        model3 |     440    25.6459    47    24   -20.3541  -114.3499   -58.2664
                        model2 |     440    26.1705    47    25   -17.8295  -107.7386   -54.0934
                        model1 |     440    25.2280    47    26   -16.7720  -102.5943   -51.3876
                  Should I select the model10 although it does not have the lowest values for all criterias?

                  Comment


                  • #10
                    There is an important aspect about the use of the model selection criteria: You can only meaningfully compare models with the same number of groups. In your case, model10 and the last estimated model (indicated by the dot) have more groups than all the other models. A larger data set by itself can be useful, but for model comparison purposes you should restrict the estimation samples to be the same.
                    https://www.kripfganz.de/stata/

                    Comment


                    • #11
                      Dear Sebastian,

                      Thank you for this warning. The first 9 models have the three lags of ESGSCORE variable so they have less number of groups. When I use MMSC to compare these 9 models, the result is as follows:

                      Models
                      Code:
                      xtdpdgmm L(0/3).TOBINSQ L(0/3).( ESGSCORE SIZE LEV ROA ), model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE SIZE LEV ROA ), model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE, lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE SIZE ROA ) L(0/2).LEV, model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm ( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE SIZE ROA ) L(0/1).LEV, model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE SIZE) L(0/2).ROA L(0/1).LEV, model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE) L(0/2).(SIZE ROA) L(0/1).LEV, model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE) L(0/2).(ROA) L(0/1).(SIZE LEV), model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE) L(0/2).(ROA) L(0/1).(LEV) SIZE, model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      xtdpdgmm L(0/2).TOBINSQ L(0/3).( ESGSCORE) L(0/2).(ROA) LEV SIZE, model(fod) collapse gmm( TOBINSQ , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE , lag(1 .)) gmm( LEV , lag(1 .)) gmm( ROA , lag(1 .)) teffects two vce(r) overid
                      Code:
                       estat mmsc model9 model8 model7 model6 model5 model4 model3 model2 model1
                      
                      Andrews-Lu model and moment selection criteria
                      
                             Model | ngroups          J  nmom  npar   MMSC-AIC   MMSC-BIC  MMSC-HQIC
                      -------------+----------------------------------------------------------------
                                 . |     440    33.4082    47    18   -24.5918  -143.1082   -72.3942
                            model9 |     440    33.4082    47    18   -24.5918  -143.1082   -72.3942
                            model8 |     440    29.7748    47    19   -26.2252  -140.6549   -72.3792
                            model7 |     440    28.6277    47    20   -25.3723  -135.7152   -69.8780
                            model6 |     440    28.6205    47    21   -23.3795  -129.6356   -66.2368
                            model5 |     440    25.9056    47    22   -24.0944  -126.2638   -65.3034
                            model4 |     440    25.5041    47    23   -22.4959  -120.5785   -62.0565
                            model3 |     440    25.6459    47    24   -20.3541  -114.3499   -58.2664
                            model2 |     440    26.1705    47    25   -17.8295  -107.7386   -54.0934
                            model1 |     440    25.2280    47    26   -16.7720  -102.5943   -51.3876
                      The same question is valid, should I select the model 9 although it does not have the lowest values for all criterias?

                      Comment


                      • #12
                        Dear Sebastian,

                        Please ignore my question in the post #11. When I use the winsorized variables in my model and apply the same steps, selection of model11 is clear according to the results below. However I have another problem now; when I try to run the underidentication test for the model11, I get the error: "command underid is unrecognized". I could not achieve the installation of this command via help menu.I use Stata/MP 14.2. How can I solve the issue?

                        Code:
                        Andrews-Lu model and moment selection criteria
                         
                               Model | ngroups          J  nmom  npar   MMSC-AIC   MMSC-BIC  MMSC-HQIC
                        -------------+----------------------------------------------------------------
                                   . |     440    23.2936    31    14   -10.7064   -80.1815   -38.7285
                             model13 |     440    23.2936    31    14   -10.7064   -80.1815   -38.7285
                             model12 |     440    22.7521    39    15   -25.2479  -123.3305   -64.8085
                             model11 |     440    27.3939    47    16   -34.6061  -161.2962   -85.7053
                             model10 |     440    25.6474    47    17   -34.3526  -156.9559   -83.8034
                              model9 |     440    25.5839    47    18   -32.4161  -150.9326   -80.2186
                              model8 |     440    24.8981    47    19   -31.1019  -145.5316   -77.2559
                              model7 |     440    22.8425    47    20   -31.1575  -141.5004   -75.6632
                              model6 |     440    21.8887    47    21   -30.1113  -136.3674   -72.9686
                              model5 |     440    21.2686    47    22   -28.7314  -130.9008   -69.9404
                              model4 |     440    20.9577    47    23   -27.0423  -125.1249   -66.6029
                              model3 |     440    20.9466    47    24   -25.0534  -119.0492   -62.9656
                              model2 |     440    20.7716    47    25   -23.2284  -113.1374   -59.4923
                              model1 |     440    20.4736    47    26   -21.5264  -107.3487   -56.1419

                        Comment


                        • #13
                          The underid command is not an official Stata command. It seems that it is not yet publicly released by its author. So, I am afraid you cannot yet use it.
                          https://www.kripfganz.de/stata/

                          Comment


                          • #14
                            Thank you. So, could you please check my model below whether the syntax is correct and specification tests are satisfying?

                            Code:
                            xtdpdgmm L(0/2).TOBINSQ_w  L(0/3).( ESGSCORE ) SIZE_w ROA_w  LEV_w, model(fod) collapse gmm( TOBINSQ_w  , lag(1 .)) gmm( ESGSCORE , lag(1 .)) gmm( SIZE_w  , lag(1 .)) gmm( LEV_w  , lag(1 .)) gmm( ROA_w  , lag(1 .)) teffects two vce(r) overid
                            Code:
                            Generalized method of moments estimation
                             
                            Fitting full model:
                            Step 1         f(b) =  .00473743
                            Step 2         f(b) =  .06225878
                             
                            Fitting reduced model 1:
                            Step 1         f(b) =  .03609266
                             
                            Fitting reduced model 2:
                            Step 1         f(b) =  .04614479
                             
                            Fitting reduced model 3:
                            Step 1         f(b) =  .05093924
                             
                            Fitting reduced model 4:
                            Step 1         f(b) =  .05709632
                             
                            Fitting reduced model 5:
                            Step 1         f(b) =  .04657066
                             
                            Fitting reduced model 6:
                            Step 1         f(b) =   .0505345
                             
                            Group variable: ID                           Number of obs         =      2164
                            Time variable: YEAR                          Number of groups      =       440
                             
                            Moment conditions:     linear =      47      Obs per group:    min =         1
                                                nonlinear =       0                        avg =  4.918182
                                                    total =      47                        max =         7
                             
                                                               (Std. Err. adjusted for 440 clusters in ID)
                            ------------------------------------------------------------------------------
                                         |              WC-Robust
                               TOBINSQ_w |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                            -------------+----------------------------------------------------------------
                               TOBINSQ_w |
                                     L1. |   .8185818   .0891309     9.18   0.000     .6438884    .9932751
                                     L2. |  -.0972134   .0515191    -1.89   0.059     -.198189    .0037622
                                         |
                                ESGSCORE |
                                     --. |  -.0111641   .0084997    -1.31   0.189    -.0278231    .0054949
                                     L1. |   .0055477   .0083977     0.66   0.509    -.0109116     .022007
                                     L2. |   .0001915   .0015369     0.12   0.901    -.0028208    .0032039
                                     L3. |   -.002003   .0010463    -1.91   0.056    -.0040537    .0000477
                                         |
                                  SIZE_w |  -.0018058    .029179    -0.06   0.951    -.0589956    .0553839
                                   ROA_w |   .0133053   .0084792     1.57   0.117    -.0033136    .0299243
                                   LEV_w |   .3625575   .4295074     0.84   0.399    -.4792616    1.204377
                                         |
                                    YEAR |
                                   2013  |  -.0217133   .0317829    -0.68   0.494    -.0840066      .04058
                                   2014  |   .0509819   .0329594     1.55   0.122    -.0136174    .1155812
                                   2015  |   .0297979   .0391076     0.76   0.446    -.0468516    .1064475
                                   2016  |   .0373139   .0400087     0.93   0.351    -.0411017    .1157295
                                   2017  |   .1008531   .0383089     2.63   0.008      .025769    .1759373
                                   2018  |   .0255624   .0472693     0.54   0.589    -.0670838    .1182085
                                         |
                                   _cons |   .4858946    .490693     0.99   0.322     -.475846    1.447635
                            ------------------------------------------------------------------------------
                            Instruments corresponding to the linear moment conditions:
                             1, model(fodev):
                               L1.TOBINSQ_w L2.TOBINSQ_w L3.TOBINSQ_w L4.TOBINSQ_w L5.TOBINSQ_w
                               L6.TOBINSQ_w L7.TOBINSQ_w L8.TOBINSQ_w
                             2, model(fodev):
                               L1.ESGSCORE L2.ESGSCORE L3.ESGSCORE L4.ESGSCORE L5.ESGSCORE L6.ESGSCORE
                               L7.ESGSCORE L8.ESGSCORE
                             3, model(fodev):
                               L1.SIZE_w L2.SIZE_w L3.SIZE_w L4.SIZE_w L5.SIZE_w L6.SIZE_w L7.SIZE_w
                               L8.SIZE_w
                             4, model(fodev):
                               L1.LEV_w L2.LEV_w L3.LEV_w L4.LEV_w L5.LEV_w L6.LEV_w L7.LEV_w L8.LEV_w
                             5, model(fodev):
                               L1.ROA_w L2.ROA_w L3.ROA_w L4.ROA_w L5.ROA_w L6.ROA_w L7.ROA_w L8.ROA_w
                             6, model(level):
                               2013bn.YEAR 2014.YEAR 2015.YEAR 2016.YEAR 2017.YEAR 2018.YEAR
                             7, model(level):
                               _cons
                            Code:
                            estat serial, ar(1/3)
                             
                            Arellano-Bond test for autocorrelation of the first-differenced residuals
                            H0: no autocorrelation of order 1:     z =   -5.2641   Prob > |z|  =    0.0000
                            H0: no autocorrelation of order 2:     z =    0.3312   Prob > |z|  =    0.7405
                            H0: no autocorrelation of order 3:     z =    0.5569   Prob > |z|  =    0.5776
                            Code:
                            . estat overid
                             
                            Sargan-Hansen test of the overidentifying restrictions
                            H0: overidentifying restrictions are valid
                             
                            2-step moment functions, 2-step weighting matrix       chi2(31)    =   27.3939
                                                                                   Prob > chi2 =    0.6523
                             
                            2-step moment functions, 3-step weighting matrix       chi2(31)    =   29.8561
                                                                                   Prob > chi2 =    0.5247
                            Code:
                            . estat overid, difference
                             
                            Sargan-Hansen (difference) test of the overidentifying restrictions
                            H0: (additional) overidentifying restrictions are valid
                             
                            2-step weighting matrix from full model
                             
                                              | Excluding                   | Difference                 
                            Moment conditions |       chi2     df         p |        chi2     df         p
                            ------------------+-----------------------------+-----------------------------
                              1, model(fodev) |    15.8808     23    0.8603 |     11.5131      8    0.1743
                              2, model(fodev) |    20.3037     23    0.6235 |      7.0902      8    0.5269
                              3, model(fodev) |    22.4133     23    0.4954 |      4.9806      8    0.7596
                              4, model(fodev) |    25.1224     23    0.3440 |      2.2715      8    0.9715
                              5, model(fodev) |    20.4911     23    0.6121 |      6.9028      8    0.5472
                              6, model(level) |    22.2352     25    0.6221 |      5.1587      6    0.5236
                                 model(fodev) |          .     -9         . |           .      .         .

                            Comment


                            • #15
                              The specification looks reasonable indeed and none of the specification tests raises any concern.
                              https://www.kripfganz.de/stata/

                              Comment

                              Working...
                              X