Shelly:
please note that Carlo is enough for me. Thanks.
That said:
1) have you already checked the collinearity of your categorical variables via -estat vce,corr- after -xtreg,re-?
2) you can check the functional form mispecification of your regression (that, under more general conditions, can be read as a test of model msspecification at large) following an approach similar to the one detailed in -linktest- entry, Stata .pdf manual:
As sq_fitted coefficient reaches statistical significance no matter the approach, the model is misspecified (and deliberately so).
please note that Carlo is enough for me. Thanks.
That said:
1) have you already checked the collinearity of your categorical variables via -estat vce,corr- after -xtreg,re-?
2) you can check the functional form mispecification of your regression (that, under more general conditions, can be read as a test of model msspecification at large) following an approach similar to the one detailed in -linktest- entry, Stata .pdf manual:
Code:
use "https://www.stata-press.com/data/r16/nlswork.dta" . xtreg ln_wage c.age##c.age, re Random-effects GLS regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-sq: Obs per group: within = 0.1087 min = 1 between = 0.1015 avg = 6.1 overall = 0.0870 max = 15 Wald chi2(2) = 3388.51 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0590339 .0027172 21.73 0.000 .0537083 .0643596 | c.age#c.age | -.0006758 .0000451 -15.00 0.000 -.0007641 -.0005876 | _cons | .5479714 .0397476 13.79 0.000 .4700675 .6258752 -------------+---------------------------------------------------------------- sigma_u | .3654049 sigma_e | .30245467 rho | .59342665 (fraction of variance due to u_i) ------------------------------------------------------------------------------ . predict fitted, xb (24 missing values generated) . gen sq_fitted=fitted^2 (24 missing values generated) *Augmented regression* . xtreg ln_wage c.age##c.age fitted sq_fitted , re note: c.age#c.age omitted because of collinearity Random-effects GLS regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-sq: Obs per group: within = 0.1105 min = 1 between = 0.1039 avg = 6.1 overall = 0.0888 max = 15 Wald chi2(3) = 3459.51 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | .0166047 .0024441 6.79 0.000 .0118144 .021395 | c.age#c.age | 0 (omitted) | fitted | 6.745315 .7234634 9.32 0.000 5.327352 8.163277 sq_fitted | -2.009945 .2520254 -7.98 0.000 -2.503906 -1.515985 _cons | -4.445486 .5624869 -7.90 0.000 -5.54794 -3.343032 -------------+---------------------------------------------------------------- sigma_u | .36492262 sigma_e | .30215307 rho | .59327076 (fraction of variance due to u_i) ------------------------------------------------------------------------------ *Ancillary regression* . xtreg ln_wage fitted sq_fitted , re Random-effects GLS regression Number of obs = 28,510 Group variable: idcode Number of groups = 4,710 R-sq: Obs per group: within = 0.1088 min = 1 between = 0.1045 avg = 6.1 overall = 0.0887 max = 15 Wald chi2(2) = 3407.81 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ ln_wage | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- fitted | 2.805959 .4327827 6.48 0.000 1.95772 3.654197 sq_fitted | -.5516341 .1320951 -4.18 0.000 -.8105358 -.2927324 _cons | -1.468083 .3527217 -4.16 0.000 -2.159405 -.7767613 -------------+---------------------------------------------------------------- sigma_u | .36481589 sigma_e | .30242516 rho | .59269507 (fraction of variance due to u_i) ------------------------------------------------------------------------------ .
Comment