hi there I am investigating the effect of FX derivative usage on lntobinsq (with control variables added) I
have 3 regressions: 2 pooled ols models (1 with industriy dummies) and one fixed effects regression:
pooled:
pooled #2 (ind2*) where we have industry dummies (ind2*) included but not shown here:
Fixed effects model
My question is: is there any cause for concern that the constant term jumps from 0.2-0.5 in the ols regression to 3.8 in the Fixed effects model?
- or is this completely normal/should'nt be stressed about?
Thanks
have 3 regressions: 2 pooled ols models (1 with industriy dummies) and one fixed effects regression:
pooled:
Code:
regress lntobinsq lnassets Derivatives10 bookleverage_w1 roa_w1 rnd_rev_w1 cash_to_totalassets_w1 div_yield_w1 year2016 if inlist(year,2015,2016), robust
Linear regression Number of obs = 586
F(8, 577) = 64.62
Prob > F = 0.0000
R-squared = 0.6569
Root MSE = .3282
----------------------------------------------------------------------------------------
| Robust
lntobinsq | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
lnassets | -.0280999 .0091509 -3.07 0.002 -.046073 -.0101268
Derivatives10 | .0522034 .0310484 1.68 0.093 -.0087782 .113185
bookleverage_w1 | .1777102 .0570362 3.12 0.002 .0656864 .2897341
roa_w1 | .0831313 .0058784 14.14 0.000 .0715857 .094677
rnd_rev_w1 | .0157784 .0034542 4.57 0.000 .0089941 .0225627
cash_to_totalassets_w1 | .2948839 .1538507 1.92 0.056 -.0072918 .5970596
div_yield_w1 | -.0586209 .0094744 -6.19 0.000 -.0772295 -.0400124
year2016 | -.0057626 .0266702 -0.22 0.829 -.058145 .0466198
_cons | .267082 .0835158 3.20 0.001 .10305 .4311141
----------------------------------------------------------------------------------------
pooled #2 (ind2*) where we have industry dummies (ind2*) included but not shown here:
Code:
. regress lntobinsq lnassets FXDerivatives10 bookleverage_w1 roa_w1 rnd_rev_w1 cash_to_totalassets_w1 div_yield_w1 year2016 ind2* if inlist(year,2015,2016), robust
note: ind240 omitted because of collinearity
note: ind247 omitted because of collinearity
note: ind249 omitted because of collinearity
Linear regression Number of obs = 586
F(55, 529) = .
Prob > F = .
R-squared = 0.7518
Root MSE = .29155
----------------------------------------------------------------------------------------
| Robust
lntobinsq | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
lnassets | -.0150159 .0102229 -1.47 0.142 -.0350984 .0050665
Derivatives10 | .0020754 .0304516 0.07 0.946 -.0577454 .0618962
bookleverage_w1 | .0411962 .0605595 0.68 0.497 -.0777704 .1601628
roa_w1 | .0743793 .0069553 10.69 0.000 .0607158 .0880428
rnd_rev_w1 | .0079455 .0030852 2.58 0.010 .0018847 .0140062
cash_to_totalassets_w1 | .2033755 .179466 1.13 0.258 -.1491781 .5559291
div_yield_w1 | -.051623 .008881 -5.81 0.000 -.0690694 -.0341765
year2016 | -.0131488 .0236852 -0.56 0.579 -.0596774 .0333798
_cons | .5296384 .0540485 9.80 0.000 .4234624 .6358144
Code:
. xtreg lntobinsq lnassets FXDerivatives10 bookleverage_w1 roa_w1 rnd_rev_w1 cash_to_totalassets_w1 div_yield_w1 year2016 if inlist(year,2015,2016), fe robust
Fixed-effects (within) regression Number of obs = 586
Group variable: firmid Number of groups = 306
R-sq: Obs per group:
within = 0.3443 min = 1
between = 0.1362 avg = 1.9
overall = 0.1489 max = 2
F(8,305) = 12.98
corr(u_i, Xb) = -0.7578 Prob > F = 0.0000
(Std. Err. adjusted for 306 clusters in firmid)
----------------------------------------------------------------------------------------
| Robust
lntobinsq | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-----------------------+----------------------------------------------------------------
lnassets | -.4679803 .0687184 -6.81 0.000 -.6032024 -.3327582
Derivatives10 | .0544599 .0836445 0.65 0.515 -.1101334 .2190531
bookleverage_w1 | .2358255 .1360899 1.73 0.084 -.0319684 .5036195
roa_w1 | .0136564 .0069675 1.96 0.051 -.0000541 .0273669
rnd_rev_w1 | -.0147865 .0134586 -1.10 0.273 -.04127 .011697
cash_to_totalassets_w1 | -.1290604 .3411373 -0.38 0.705 -.8003409 .5422201
div_yield_w1 | -.0390374 .0083692 -4.66 0.000 -.0555062 -.0225687
year2016 | .0248787 .0141368 1.76 0.079 -.0029393 .0526967
_cons | 3.83923 .4928974 7.79 0.000 2.86932 4.80914
-----------------------+----------------------------------------------------------------
sigma_u | .7890989
sigma_e | .12121952
rho | .97694566 (fraction of variance due to u_i)
----------------------------------------------------------------------------------------
- or is this completely normal/should'nt be stressed about?
Thanks
Comment