Dear Statalisters.
I have 5 continuous variables and a binary variable
This is the abridged dataset:
I decided to perform a latent profile analysis. Below, command and output :
Now, the obstacle I'm facing.
In spite of the presentation of the margins as well as the CIs, I have not found a way to get the marginsplot of var1 to var5, according to the two classes. Ideally, I would like to have a graph for the means + CI of each var, with the 2 classes side by side.
Indeed, I see these values are available in the r(table) matrix:
In spite of being a - gsem - , I believe we can use - margins - as well as - marginsplot -, for a couple of reasons:
There is an example here, provided by StataCorp, albeit the case is slightly different from mine.
Additionally, if I type:
I get the predictive values for mu overvall.
However, I wish to have the predictive margins according to each class (1 and 2) as presented after typing - estat lcmean - command.
To end, I wonder whether it is possible to get it, maybe:
a) Under -margins + marginsplot
b) Using Mata, after transforming the r(table) in a dataset
c) Some sort of - predict - under "twoway" command, using the mean + rcap.
So far, I tried options a and c, to no avail.
Thank you in advance for the suggestions.
I have 5 continuous variables and a binary variable
This is the abridged dataset:
Code:
* Example generated by -dataex-. To install: ssc install dataex clear input float(binvar var1 var2 var3 var4 var5) 0 50 67.85714 54.16667 83.33334 43.75 1 62.5 39.28571 62.5 58.33333 37.5 0 50 64.28571 54.16667 50 43.75 1 62.5 71.42857 75 91.66666 53.125 1 62.5 53.57143 66.66667 58.33333 34.375 0 37.5 82.14285 54.16667 41.66667 25 0 87.5 89.28572 95.83334 75 75 0 87.5 78.57143 70.83333 83.33334 56.25 1 100 89.28572 87.5 83.33334 81.25 1 62.5 45.83333 58.33333 50 37.5 0 50 67.85714 62.5 66.66667 50 1 75 67.85714 70.83333 75 68.75 1 87.5 75 87.5 75 46.875 0 87.5 89.28572 75 83.33334 68.75 0 100 96.42857 91.66666 83.33334 81.25 0 50 64.28571 75 66.66667 43.75 0 75 57.14286 66.66667 83.33334 59.375 1 62.5 53.57143 54.16667 58.33333 43.75 0 87.5 75 87.5 75 75 0 62.5 64.28571 62.5 66.66667 59.375 1 87.5 71.42857 79.99999 83.33334 53.125 1 37.5 57.14286 75 75 37.5 1 62.5 53.57143 58.33333 83.33334 37.5 0 62.5 64.28571 75 58.33333 37.5 0 87.5 75 79.16666 83.33334 56.25 1 50 75 70.83333 58.33333 56.25 1 75 50 62.5 75 40.625 0 62.5 71.42857 70 58.33333 65.625 1 100 78.57143 91.66666 91.66666 59.375 0 75 92.85715 83.33334 58.33333 53.125 0 75 67.85714 83.33334 83.33334 75 1 75 60.71429 58.33333 83.33334 53.125 0 100 71.42857 75 66.66667 62.5 0 62.5 75 66.66667 75 46.875 0 100 96.42857 87.5 100 50 1 62.5 53.57143 79.16666 75 56.25 1 62.5 53.57143 66.66667 75 50 1 50 50 75 50 . 1 87.5 53.57143 62.5 83.33334 65.625 0 62.5 75 54.16667 75 59.375 0 75 78.57143 75 83.33334 65.625 1 37.5 64.28571 54.16667 75 18.75 0 50 60.71429 66.66667 41.66667 37.5 1 62.5 60.71429 70.83333 83.33334 40.625 0 62.5 96.42857 79.16666 100 78.125 0 62.5 67.85714 75 66.66667 46.875 1 87.5 60.71429 54.16667 50 50 0 62.5 85.71428 54.16667 58.33333 53.125 1 87.5 78.57143 83.33334 100 50 0 87.5 85.71428 70.83333 66.66667 50 0 100 67.85714 79.16666 75 71.875 1 62.5 46.42857 41.66667 41.66667 28.125 1 87.5 67.85714 70.83333 91.66666 56.25 1 75 57.14286 62.5 75 43.75 0 87.5 75 75 58.33333 43.75 0 62.5 60.71429 62.5 66.66667 40.625 1 75 71.42857 58.33333 75 50 1 50 60.71429 54.16667 41.66667 43.75 1 75 60.71429 75 75 43.75 1 100 64.28571 70.83333 100 71.875 1 62.5 82.14285 54.16667 50 53.125 0 75 78.57143 75 91.66666 43.75 1 87.5 71.42857 50 100 71.875 0 87.5 75 70 91.66666 62.5 0 62.5 71.42857 70.83333 58.33333 46.875 0 . 67.85714 58.33333 66.66667 62.5 1 50 64.28571 66.66667 50 40.625 1 75 71.42857 87.5 75 50 0 100 75 70.83333 66.66667 78.125 0 50 64.28571 62.5 75 53.125 0 100 100 91.66666 100 78.125 0 75 82.14285 83.33334 83.33334 65.625 1 75 57.14286 75 41.66667 50 1 62.5 75 75 91.66666 43.75 0 75 64.28571 70.83333 75 53.125 0 75 64.28571 70.83333 50 50 0 75 78.57143 87.5 33.333332 68.75 0 62.5 60.71429 58.33333 83.33334 37.5 0 62.5 60.71429 87.5 83.33334 56.25 0 62.5 67.85714 70.83333 83.33334 37.5 1 62.5 53.57143 54.16667 100 71.875 0 62.5 71.42857 87.5 91.66666 59.375 0 . 91.66666 87.5 83.33334 71.875 1 75 75 75 75 50 0 75 50 58.33333 91.66666 59.375 1 87.5 64.28571 70.83333 75 62.5 0 87.5 89.28572 75 100 56.25 0 62.5 64.28571 70.83333 75 56.25 1 50 67.85714 66.66667 41.66667 40.625 0 75 60.71429 45.83333 75 65.625 0 75 82.14285 70.83333 58.33333 59.375 1 75 75 75 91.66666 40.625 1 100 82.14285 90 87.5 68.75 0 87.5 100 91.66666 100 75 1 75 62.5 58.33333 37.5 40.625 0 75 64.28571 75 100 59.375 1 50 57.14286 54.16667 83.33334 59.375 1 . 60.71429 62.5 75 68.75 0 100 71.42857 75 75 62.5 0 75 71.42857 66.66667 66.66667 50 end
I decided to perform a latent profile analysis. Below, command and output :
Code:
gsem (var1 var2 var3 var4 var5 <- _cons), family(gaussian) link(identity) lclass(C 2) (output omitted, because the summary result is presented below) estat lcmean Latent class marginal means Number of obs = 96 ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1 | var1 | 63.1006 1.727262 36.53 0.000 59.71523 66.48597 var2 | 63.35653 1.420895 44.59 0.000 60.57162 66.14143 var3 | 64.09592 1.381402 46.40 0.000 61.38842 66.80342 var4 | 67.63647 2.22846 30.35 0.000 63.26877 72.00417 var5 | 47.28173 1.523574 31.03 0.000 44.29558 50.26788 -------------+---------------------------------------------------------------- 2 | var1 | 85.80579 2.117787 40.52 0.000 81.655 89.95657 var2 | 78.5297 1.816236 43.24 0.000 74.96994 82.08946 var3 | 79.42668 1.602816 49.55 0.000 76.28521 82.56814 var4 | 82.44715 2.532471 32.56 0.000 77.4836 87.41071 var5 | 62.92604 1.905211 33.03 0.000 59.19189 66.66018
Now, the obstacle I'm facing.
In spite of the presentation of the margins as well as the CIs, I have not found a way to get the marginsplot of var1 to var5, according to the two classes. Ideally, I would like to have a graph for the means + CI of each var, with the 2 classes side by side.
Indeed, I see these values are available in the r(table) matrix:
Code:
return list matrix list r(table)
There is an example here, provided by StataCorp, albeit the case is slightly different from mine.
Additionally, if I type:
Code:
margins, dydx(*) marginsplot
However, I wish to have the predictive margins according to each class (1 and 2) as presented after typing - estat lcmean - command.
To end, I wonder whether it is possible to get it, maybe:
a) Under -margins + marginsplot
b) Using Mata, after transforming the r(table) in a dataset
c) Some sort of - predict - under "twoway" command, using the mean + rcap.
So far, I tried options a and c, to no avail.
Thank you in advance for the suggestions.
Comment