Hi,
I am a beginner to STATA and to Dynamic Panel Regression and I am facing the following problem,
I am running a dynamic panel regression, I am dealing with a finance data where my dependent variable is profitability measure and independent variables are variables of the Balance sheet. Therefore all of them affect my return on equity. It is dynamic because profitability depends on the lagged variables.
I am selecting endogenous variables that are theoretically justified. I am considering the time and lagged variables as instrument variables. All my regressors are formed from an interaction of endogenous variables with the correspondent dummy variable (Negw or Posw),
Here are the regressors:
ocNegw: operating expenses (oc) of the firm multiplied by a dummy variable that equals to 1 if a firm has low profitability and zero otherwise. i.e with ROE<median ROE of peers.
i.e. ocNegw = oc*Negw. This applies to all the regressors.
ocPosw: operating expenses (oc) of the firm multiplied by 1- dummy variable that equals to 1 if a firm has low profitability and zero otherwise. i.e with ROE>median ROE of peers
LConNegavgw: liquidity creation (on balance sheet activities) for firm with ROE<median ROE of peers
LConPosavgw: liquidity creation (on balance sheet activities) for firm with ROE> or equal to median ROE of peers.
LCoffNegavgw: liquidity creation (off balance sheet activities) for firm with ROE<median ROE of peers.
LCoffPosavgw: liquidity creation (off balance sheet activities) for firm with ROE> or equal to median ROE of peers.
CARNegw: car with ROE<median ROE of peers
CARPosw: car with ROE> or equal to median ROE of peers.
DLLNegw: Discretionary loan loss provisions for firm with ROE<median ROE of peers.
DLLPosw: Discretionary loan loss provisions for firm with ROE>=median ROE of peers.
I am using xtabond2 and my code is as the following:
[xtabond2 roeavgw L.roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw ocNegw ocPosw i.year gdpg hh if sz_large == 1, gmm(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw ocNegw ocPosw ,lag(1 1) collapse) iv(i.year) robust twostep small][/CODE]
My output:
. xi: xtabond2 roeavgw L.roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw ocNegw ocPosw
> i.year gdpg hh if sz_large == 1, gmm(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw
> ocNegw ocPosw ,lag(3 4) collapse) iv(i.year) robust twostep small
i.year _Iyear_1995-2014 (naturally coded; _Iyear_1995 omitted)
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: rssd9001 Number of obs = 3290
Time variable : q_date Number of groups = 273
Number of instruments = 46 Obs per group: min = 1
F(32, 272) = 10.89 avg = 12.05
Prob > F = 0.000 max = 48
------------------------------------------------------------------------------
| Corrected
roeavgw | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
roeavgw |
L1. | .3887444 .0864462 4.50 0.000 .2185557 .5589331
|
LConNegavgw | .1307191 .0596548 2.19 0.029 .0132752 .248163
LConPosavgw | .0169042 .1426191 0.12 0.906 -.2638734 .2976819
LCoffNegavgw | -.0262093 .1746486 -0.15 0.881 -.3700442 .3176256
LCoffPosavgw | -.6096021 .4487993 -1.36 0.175 -1.493164 .2739598
CARNegw | .0010304 .0014068 0.73 0.465 -.0017392 .0038
CARPosw | -.000301 .0014241 -0.21 0.833 -.0031048 .0025027
DLLNegw | -.0678939 .0419485 -1.62 0.107 -.1504789 .0146911
DLLPosw | .0153792 .1075936 0.14 0.886 -.196443 .2272013
ocNegw | 1.12e-06 1.95e-07 5.74 0.000 7.34e-07 1.50e-06
ocPosw | 2.99e-06 5.75e-07 5.19 0.000 1.85e-06 4.12e-06
_Iyear_1996 | 0 (omitted)
_Iyear_1997 | 0 (omitted)
_Iyear_1998 | 0 (omitted)
_Iyear_1999 | 0 (omitted)
_Iyear_2000 | 0 (omitted)
_Iyear_2001 | .1204523 .0223787 5.38 0.000 .0763948 .1645099
_Iyear_2002 | .1445693 .0301783 4.79 0.000 .0851566 .203982
_Iyear_2003 | .1757185 .0427176 4.11 0.000 .0916193 .2598178
_Iyear_2004 | .1339142 .0326646 4.10 0.000 .0696066 .1982217
_Iyear_2005 | .1495176 .032283 4.63 0.000 .0859612 .213074
_Iyear_2006 | .1565908 .03446 4.54 0.000 .0887487 .224433
_Iyear_2007 | .1082364 .0242808 4.46 0.000 .0604342 .1560387
_Iyear_2008 | 0 (omitted)
_Iyear_2009 | .0519521 .0338198 1.54 0.126 -.0146298 .1185339
_Iyear_2010 | .0928315 .0435762 2.13 0.034 .007042 .178621
_Iyear_2011 | .0991386 .0349756 2.83 0.005 .0302812 .1679959
_Iyear_2012 | .0886473 .0309433 2.86 0.004 .0277286 .149566
_Iyear_2013 | .1094711 .0396191 2.76 0.006 .0314721 .1874701
_Iyear_2014 | 0 (omitted)
gdpg | -.0140521 .0057617 -2.44 0.015 -.0253953 -.0027088
hh | -.0000207 .0000147 -1.41 0.158 -.0000496 8.12e-06
_cons | -.1408473 .0454064 -3.10 0.002 -.23024 -.0514545
------------------------------------------------------------------------------
Instruments for first differences equation
Standard
D.(_Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001
_Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007
_Iyear_2008 _Iyear_2009 _Iyear_2010 _Iyear_2011 _Iyear_2012 _Iyear_2013
_Iyear_2014)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(3/4).(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw
CARPosw DLLNegw DLLPosw ocNegw ocPosw) collapsed
Instruments for levels equation
Standard
_Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001
_Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007
_Iyear_2008 _Iyear_2009 _Iyear_2010 _Iyear_2011 _Iyear_2012 _Iyear_2013
_Iyear_2014
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL2.(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw
CARPosw DLLNegw DLLPosw ocNegw ocPosw) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -5.30 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -3.39 Pr > z = 0.001
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(13) = 70.76 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(13) = 30.79 Prob > chi2 = 0.004
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(2) = 10.25 Prob > chi2 = 0.006
Difference (null H = exogenous): chi2(11) = 20.55 Prob > chi2 = 0.038
iv(_Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005 _Iye
> ar_2006 _Iyear_2007 _Iyear_2008 _Iyear_2009 _Iyear_2010 _Iyear_2011 _Iyear_2012 _Iyear_2013 _Iyear_2014)
Hansen test excluding group: chi2(1) = 13.17 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(12) = 17.63 Prob > chi2 = 0.128
The tests are suggesting that the instruments are wrong.
Q1- How can I improve my model and choose the correct instrument?
Q2- what are the choices that I have?
Q3- what is the instrument to take when I have interaction variables of this kind?
I highly appreciate your help,
Thanks,
I am a beginner to STATA and to Dynamic Panel Regression and I am facing the following problem,
I am running a dynamic panel regression, I am dealing with a finance data where my dependent variable is profitability measure and independent variables are variables of the Balance sheet. Therefore all of them affect my return on equity. It is dynamic because profitability depends on the lagged variables.
I am selecting endogenous variables that are theoretically justified. I am considering the time and lagged variables as instrument variables. All my regressors are formed from an interaction of endogenous variables with the correspondent dummy variable (Negw or Posw),
Here are the regressors:
ocNegw: operating expenses (oc) of the firm multiplied by a dummy variable that equals to 1 if a firm has low profitability and zero otherwise. i.e with ROE<median ROE of peers.
i.e. ocNegw = oc*Negw. This applies to all the regressors.
ocPosw: operating expenses (oc) of the firm multiplied by 1- dummy variable that equals to 1 if a firm has low profitability and zero otherwise. i.e with ROE>median ROE of peers
LConNegavgw: liquidity creation (on balance sheet activities) for firm with ROE<median ROE of peers
LConPosavgw: liquidity creation (on balance sheet activities) for firm with ROE> or equal to median ROE of peers.
LCoffNegavgw: liquidity creation (off balance sheet activities) for firm with ROE<median ROE of peers.
LCoffPosavgw: liquidity creation (off balance sheet activities) for firm with ROE> or equal to median ROE of peers.
CARNegw: car with ROE<median ROE of peers
CARPosw: car with ROE> or equal to median ROE of peers.
DLLNegw: Discretionary loan loss provisions for firm with ROE<median ROE of peers.
DLLPosw: Discretionary loan loss provisions for firm with ROE>=median ROE of peers.
I am using xtabond2 and my code is as the following:
[xtabond2 roeavgw L.roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw ocNegw ocPosw i.year gdpg hh if sz_large == 1, gmm(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw ocNegw ocPosw ,lag(1 1) collapse) iv(i.year) robust twostep small][/CODE]
My output:
. xi: xtabond2 roeavgw L.roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw ocNegw ocPosw
> i.year gdpg hh if sz_large == 1, gmm(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw CARPosw DLLNegw DLLPosw
> ocNegw ocPosw ,lag(3 4) collapse) iv(i.year) robust twostep small
i.year _Iyear_1995-2014 (naturally coded; _Iyear_1995 omitted)
Favoring space over speed. To switch, type or click on mata: mata set matafavor speed, perm.
Warning: Two-step estimated covariance matrix of moments is singular.
Using a generalized inverse to calculate optimal weighting matrix for two-step estimation.
Difference-in-Sargan/Hansen statistics may be negative.
Dynamic panel-data estimation, two-step system GMM
------------------------------------------------------------------------------
Group variable: rssd9001 Number of obs = 3290
Time variable : q_date Number of groups = 273
Number of instruments = 46 Obs per group: min = 1
F(32, 272) = 10.89 avg = 12.05
Prob > F = 0.000 max = 48
------------------------------------------------------------------------------
| Corrected
roeavgw | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
roeavgw |
L1. | .3887444 .0864462 4.50 0.000 .2185557 .5589331
|
LConNegavgw | .1307191 .0596548 2.19 0.029 .0132752 .248163
LConPosavgw | .0169042 .1426191 0.12 0.906 -.2638734 .2976819
LCoffNegavgw | -.0262093 .1746486 -0.15 0.881 -.3700442 .3176256
LCoffPosavgw | -.6096021 .4487993 -1.36 0.175 -1.493164 .2739598
CARNegw | .0010304 .0014068 0.73 0.465 -.0017392 .0038
CARPosw | -.000301 .0014241 -0.21 0.833 -.0031048 .0025027
DLLNegw | -.0678939 .0419485 -1.62 0.107 -.1504789 .0146911
DLLPosw | .0153792 .1075936 0.14 0.886 -.196443 .2272013
ocNegw | 1.12e-06 1.95e-07 5.74 0.000 7.34e-07 1.50e-06
ocPosw | 2.99e-06 5.75e-07 5.19 0.000 1.85e-06 4.12e-06
_Iyear_1996 | 0 (omitted)
_Iyear_1997 | 0 (omitted)
_Iyear_1998 | 0 (omitted)
_Iyear_1999 | 0 (omitted)
_Iyear_2000 | 0 (omitted)
_Iyear_2001 | .1204523 .0223787 5.38 0.000 .0763948 .1645099
_Iyear_2002 | .1445693 .0301783 4.79 0.000 .0851566 .203982
_Iyear_2003 | .1757185 .0427176 4.11 0.000 .0916193 .2598178
_Iyear_2004 | .1339142 .0326646 4.10 0.000 .0696066 .1982217
_Iyear_2005 | .1495176 .032283 4.63 0.000 .0859612 .213074
_Iyear_2006 | .1565908 .03446 4.54 0.000 .0887487 .224433
_Iyear_2007 | .1082364 .0242808 4.46 0.000 .0604342 .1560387
_Iyear_2008 | 0 (omitted)
_Iyear_2009 | .0519521 .0338198 1.54 0.126 -.0146298 .1185339
_Iyear_2010 | .0928315 .0435762 2.13 0.034 .007042 .178621
_Iyear_2011 | .0991386 .0349756 2.83 0.005 .0302812 .1679959
_Iyear_2012 | .0886473 .0309433 2.86 0.004 .0277286 .149566
_Iyear_2013 | .1094711 .0396191 2.76 0.006 .0314721 .1874701
_Iyear_2014 | 0 (omitted)
gdpg | -.0140521 .0057617 -2.44 0.015 -.0253953 -.0027088
hh | -.0000207 .0000147 -1.41 0.158 -.0000496 8.12e-06
_cons | -.1408473 .0454064 -3.10 0.002 -.23024 -.0514545
------------------------------------------------------------------------------
Instruments for first differences equation
Standard
D.(_Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001
_Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007
_Iyear_2008 _Iyear_2009 _Iyear_2010 _Iyear_2011 _Iyear_2012 _Iyear_2013
_Iyear_2014)
GMM-type (missing=0, separate instruments for each period unless collapsed)
L(3/4).(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw
CARPosw DLLNegw DLLPosw ocNegw ocPosw) collapsed
Instruments for levels equation
Standard
_Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001
_Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005 _Iyear_2006 _Iyear_2007
_Iyear_2008 _Iyear_2009 _Iyear_2010 _Iyear_2011 _Iyear_2012 _Iyear_2013
_Iyear_2014
_cons
GMM-type (missing=0, separate instruments for each period unless collapsed)
DL2.(roeavgw LConNegavgw LConPosavgw LCoffNegavgw LCoffPosavgw CARNegw
CARPosw DLLNegw DLLPosw ocNegw ocPosw) collapsed
------------------------------------------------------------------------------
Arellano-Bond test for AR(1) in first differences: z = -5.30 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -3.39 Pr > z = 0.001
------------------------------------------------------------------------------
Sargan test of overid. restrictions: chi2(13) = 70.76 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)
Hansen test of overid. restrictions: chi2(13) = 30.79 Prob > chi2 = 0.004
(Robust, but weakened by many instruments.)
Difference-in-Hansen tests of exogeneity of instrument subsets:
GMM instruments for levels
Hansen test excluding group: chi2(2) = 10.25 Prob > chi2 = 0.006
Difference (null H = exogenous): chi2(11) = 20.55 Prob > chi2 = 0.038
iv(_Iyear_1996 _Iyear_1997 _Iyear_1998 _Iyear_1999 _Iyear_2000 _Iyear_2001 _Iyear_2002 _Iyear_2003 _Iyear_2004 _Iyear_2005 _Iye
> ar_2006 _Iyear_2007 _Iyear_2008 _Iyear_2009 _Iyear_2010 _Iyear_2011 _Iyear_2012 _Iyear_2013 _Iyear_2014)
Hansen test excluding group: chi2(1) = 13.17 Prob > chi2 = 0.000
Difference (null H = exogenous): chi2(12) = 17.63 Prob > chi2 = 0.128
The tests are suggesting that the instruments are wrong.
Q1- How can I improve my model and choose the correct instrument?
Q2- what are the choices that I have?
Q3- what is the instrument to take when I have interaction variables of this kind?
I highly appreciate your help,
Thanks,
Comment