Could the capabilities of cformat be extended to other types of displayed output? I'm thinking specifically of correlation matrixes from correlate, but I suspect there are others as well where such functionality might be useful.
Code:
. set cformat . reg y x Source | SS df MS Number of obs = 1,000 -------------+---------------------------------- F(1, 998) = 288.46 Model | 437.799556 1 437.799556 Prob > F = 0.0000 Residual | 1514.6571 998 1.51769249 R-squared = 0.2242 -------------+---------------------------------- Adj R-squared = 0.2235 Total | 1952.45666 999 1.95441107 Root MSE = 1.2319 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x | .4625608 .0272347 16.98 0.00 .4091169 .5160047 _cons | .0619798 .0389869 1.59 0.11 -.0145258 .1384855 ------------------------------------------------------------------------------ . corr y x (obs=1,000) | y x -------------+------------------ y | 1.0000 x | 0.4735 1.0000 . set cformat %5.2f . reg y x Source | SS df MS Number of obs = 1,000 -------------+---------------------------------- F(1, 998) = 288.46 Model | 437.799556 1 437.799556 Prob > F = 0.0000 Residual | 1514.6571 998 1.51769249 R-squared = 0.2242 -------------+---------------------------------- Adj R-squared = 0.2235 Total | 1952.45666 999 1.95441107 Root MSE = 1.2319 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- x | 0.46 0.03 16.98 0.00 0.41 0.52 _cons | 0.06 0.04 1.59 0.11 -0.01 0.14 ------------------------------------------------------------------------------ . corr y x (obs=1,000) | y x -------------+------------------ y | 1.0000 x | 0.4735 1.0000
Comment