Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • mlogtest invalid syntax r(198);

    Dear all:

    I am trying to diagnose the result of mlogit with mlogtest, iia command.

    However, my stata says so:


    mlogtest, iia

    Hausman tests of IIA assumption (N=55373)

    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
    invalid syntax
    r(198);

    I tried to google and find some relevant tip for this problem in statalist, but I could not figure out. Please help. I appreciate it.

    If I try mlogtest, all, the result is below:


    LR tests for independent variables (N=55373)

    Ho: All coefficients associated with given variable(s) are 0

    | chi2 df P>chi2
    -----------------+-------------------------
    V248_A | 121.808 3 0.000
    V240 | 49.796 3 0.000
    V239 | 169.668 3 0.000
    V140 | 134.759 3 0.000
    V141 | 7607.375 3 0.000
    pts | 524.901 3 0.000
    polity | 591.331 3 0.000

    Wald tests for independent variables (N=55373)

    Ho: All coefficients associated with given variable(s) are 0

    | chi2 df P>chi2
    -----------------+-------------------------
    V248_A | 121.516 3 0.000
    V240 | 49.730 3 0.000
    V239 | 169.080 3 0.000
    V140 | 136.656 3 0.000
    V141 | 6295.052 3 0.000
    pts | 517.168 3 0.000
    polity | 560.894 3 0.000

    Hausman tests of IIA assumption (N=55373)

    Ho: Odds(Outcome-J vs Outcome-K) are independent of other alternatives
    invalid syntax
    r(198);

    Thus, I think it stucks again at Hausman tests of IIA assumption.

    Just in case, my analysis result is below:


    mlogit V142_Z V248_A V240 V239 V140 V141 pts polity if good==1

    Iteration 0: log likelihood = -69102.842
    Iteration 1: log likelihood = -64560.092
    Iteration 2: log likelihood = -64288.402
    Iteration 3: log likelihood = -64287.149
    Iteration 4: log likelihood = -64287.149

    Multinomial logistic regression Number of obs = 55373
    LR chi2(21) = 9631.39
    Prob > chi2 = 0.0000
    Log likelihood = -64287.149 Pseudo R2 = 0.0697

    -------------------------------------------------------------------------------
    V142_Z | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    --------------+----------------------------------------------------------------
    Very_Negative |
    V248_A | -.0783596 .0236045 -3.32 0.001 -.1246236 -.0320956
    V240 | -.0310157 .0312909 -0.99 0.322 -.0923448 .0303134
    V239 | -.0575845 .0077785 -7.40 0.000 -.07283 -.0423389
    V140 | .0254309 .0070425 3.61 0.000 .0116278 .0392341
    V141 | -.3897272 .0066382 -58.71 0.000 -.4027378 -.3767166
    pts | -.1652263 .0083955 -19.68 0.000 -.1816813 -.1487714
    polity | .0226378 .0035672 6.35 0.000 .0156463 .0296293
    _cons | 1.311785 .0917163 14.30 0.000 1.132025 1.491546
    --------------+----------------------------------------------------------------
    Negative |
    V248_A | -.0030316 .015578 -0.19 0.846 -.0335639 .0275006
    V240 | -.0771946 .0205735 -3.75 0.000 -.1175179 -.0368712
    V239 | -.041215 .0051924 -7.94 0.000 -.051392 -.031038
    V140 | .0237151 .0051551 4.60 0.000 .0136113 .033819
    V141 | -.2031637 .0044679 -45.47 0.000 -.2119206 -.1944069
    pts | -.0762023 .0052138 -14.62 0.000 -.0864212 -.0659833
    polity | .0492637 .0024294 20.28 0.000 .0445022 .0540251
    _cons | .5609802 .0631896 8.88 0.000 .4371308 .6848296
    --------------+----------------------------------------------------------------
    Positive | (base outcome)
    --------------+----------------------------------------------------------------
    Very_Positive |
    V248_A | -.1993458 .0193022 -10.33 0.000 -.2371774 -.1615143
    V240 | .1167159 .0255047 4.58 0.000 .0667276 .1667042
    V239 | .0358473 .0063087 5.68 0.000 .0234824 .0482122
    V140 | -.0567383 .0067511 -8.40 0.000 -.0699703 -.0435063
    V141 | .1905826 .0064302 29.64 0.000 .1779798 .2031855
    pts | -.0808074 .0065197 -12.39 0.000 -.0935858 -.068029
    polity | -.0147761 .0025415 -5.81 0.000 -.0197573 -.0097948
    _cons | -1.25555 .0787621 -15.94 0.000 -1.409921 -1.101179
    -------------------------------------------------------------------------------


    I am not sure how can I fix this. In fact, I tried ologit, but I could not find the brant test for the ologit as significant, that is why I am now using mlogit.

    Thanks again for your help.

    Best,
    Hong Jin

  • #2
    First, mlogtest is a user-supplied command not part of the distributed Stata installation. It is part of the spost package of commands, and that package exists in two versions, spost9 and spost13. From within Stata, search mlogtest brings up links to these packages. Clicking on the link for spost13, we see at the top of the output

    DESCRIPTION/AUTHOR(S)
    spost13_ado | SPost13 commands from Long and Freese (2014)
    Regression Models for Categorical Outcomes using Stata, 3rd Edition.
    Support www.indiana.edu/~jslsoc/spost.htm
    Scott Long ([email protected]) & Jeremy Freese ([email protected])
    Since your problem seems to be within mlogtest, or at a minimum, a very confusing error message from mlogtest, you would likely be best to contact the authors through the support URL.

    Do take the time to be sure the version you have installed agrees with the version of Stata you are running.

    Comment


    • #3
      There are different versions of mlogtest around. Mine (most current version) is

      Code:
      . which mlogtest
      c:\ado\plus\m\mlogtest.ado
      *! version 3.5.0 2016-10-25 | long freese | problem in Stata 14.2 smhsiao
      Notice it refers to a problem so if your version is older the problem may have been fixed.

      Also, your output is very hard to read. Use code tags. See pt. 12 of the FAQ.
      -------------------------------------------
      Richard Williams, Notre Dame Dept of Sociology
      Stata Version: 17.0 MP (2 processor)

      EMAIL: [email protected]
      WWW: https://www3.nd.edu/~rwilliam

      Comment

      Working...
      X