Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #61
    Thank you Sebastian. That was quick and helpful.
    This works quite well and I will keep you updated on results, suggestions and possibly problems :-)

    Comment


    • #62
      Sebastian Kripfganz Hi sebastain sir...I'm facing a lot of issues in my gmm tests as well....I am doing my thesis on determinants of bank profitability ( unbalanced panel with 500000 obs over 64 quarters) and I have a few explanatory variables. I am unable to know if I have segregated them correctly in my command because I am getting perfect 0.00 values for my ar1 ar2 sargan and Hansen tests...Can you please guide me? My command is as such: xtabond2 roa l.roa s ea em rwa nii llp npl liqa gdpgr cpi fedrate , gmm(l.roa s ea em rwa nii llp npl liqa, collapse) iv(gdpgr cpi fedrate) nolevel

      my stata result is as shown:


      xtabond2 roa l.roa s ea em rwa nii llp npl liqa gdpgr cpi fedrate , gmm(l.roa s ea em rwa nii llp npl liqa, collapse) iv( gdpgr
      > cpi fedrate) nolevel
      Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.

      Dynamic panel-data estimation, one-step difference GMM
      ------------------------------------------------------------------------------
      Group variable: bank Number of obs = 540555
      Time variable : quarter Number of groups = 14355
      Number of instruments = 569 Obs per group: min = 0
      Wald chi2(12) = 252491.94 avg = 37.66
      Prob > chi2 = 0.000 max = 62
      ------------------------------------------------------------------------------
      roa | Coef. Std. Err. z P>|z| [95% Conf. Interval]
      -------------+----------------------------------------------------------------
      roa |
      L1. | .1861577 .0013633 136.55 0.000 .1834857 .1888297
      |
      s | -.0009139 .0000745 -12.26 0.000 -.00106 -.0007678
      ea | -.0766093 .0005947 -128.81 0.000 -.077775 -.0754437
      em | .1876766 .0004576 410.16 0.000 .1867798 .1885734
      rwa | .0042716 .0004254 10.04 0.000 .0034378 .0051053
      nii | .0578549 .0006993 82.73 0.000 .0564842 .0592255
      llp | -.3106192 .0050583 -61.41 0.000 -.3205333 -.3007052
      npl | -.0163417 .0023104 -7.07 0.000 -.0208701 -.0118133
      liqa | .0070674 .0005639 12.53 0.000 .0059621 .0081727
      gdpgr | .0262086 .0006529 40.14 0.000 .024929 .0274883
      cpi | .0001673 .0000158 10.62 0.000 .0001365 .0001982
      fedrate | .0002772 8.93e-06 31.03 0.000 .0002597 .0002947
      ------------------------------------------------------------------------------
      Instruments for first differences equation
      Standard
      D.(gdpgr cpi fedrate)
      GMM-type (missing=0, separate instruments for each period unless collapsed)
      L(1/63).(L.roa s ea em rwa nii llp npl liqa) collapsed
      ------------------------------------------------------------------------------
      Arellano-Bond test for AR(1) in first differences: z = -227.57 Pr > z = 0.000
      Arellano-Bond test for AR(2) in first differences: z = -91.16 Pr > z = 0.000
      ------------------------------------------------------------------------------
      Sargan test of overid. restrictions: chi2(557) = 1.6e+05 Prob > chi2 = 0.000
      (Not robust, but not weakened by many instruments.)

      Difference-in-Sargan tests of exogeneity of instrument subsets:
      iv(gdpgr cpi fedrate)
      Sargan test excluding group: chi2(554) = 1.6e+05 Prob > chi2 = 0.000
      Difference (null H = exogenous): chi2(3) = 264.14 Prob > chi2 = 0.000





      Comment


      • #63
        Please note that this is primarily a Statalist thread on the xtdpdgmm command, not xtabond2.

        A few comments:
        • You seem to have a highly unbalanced panel data set with up to 62 observations for some units. Long lags are very likely to be weak instruments. I thus recommend to restrict the maximum lag order of the GMM-type instruments (to probably at most 10).
        • Your Arellano-Bond test indicates serial correlation in the idiosyncratic error term. This automatically invalidates the instruments at least for the lagged dependent variable. This could be a consequence of omitted variables. I recommend that you add further lags of the dependent variable and possibly also the independent variables as regressors to the model. Your data set is large enough such that adding further regressors does not pose any problem. You might also consider interaction terms between some of your variables to allow for a richer functional form of the effects. For a discussion, see: Kiviet, J. F. (2019). Microeconometric dynamic panel data methods: Model specification and selection
          issues. MPRA Paper 95159, Munich Personal RePEc Archive.
        • Right now, you classify all variables as predetermined. Some of them might be endogenous, in which case the first lag is not a valid instrument. You would need to start with lag 2, assuming there is no serial correlation in the error term any more.
        • It is usually recommended to add time dummies to the model.
        • Given the highly unbalanced nature of the data, it might be worth using the forward-orthogonal deviations instead of first differences. However, be aware that there is a bug in xtabond2 that could lead to incorrect estimates when using forward-orthogonal deviations. You would need to use the xtdpdgmm command instead.
        https://www.kripfganz.de/stata/

        Comment


        • #64
          Sebastian Kripfganz Hi sir, firstly thankyou os os much for replying. I appreciate it so much. Sir can I please trouble you , when you mentioned :
          restrict the maximum lag order of the GMM-type instruments (to probably at most 10) and alos this :I recommend that you add further lags of the dependent variable and possibly also the independent variables as regressors to the model. Sir can you please guide me on how to do that? The problem is we were not taught aything on gmm during our masters programme and the professors just told us to add this test in our thesis and i've no clue how to go about with this. I'm so confused and i dont know how to move on.

          Comment


          • #65
            First of all, with xtdpdgmm you can replicate your above model as follows:
            Code:
            xtdpdgmm roa L.roa s ea em rwa nii llp npl liqa gdpgr cpi fedrate, model(diff) collapse gmm(L.roa s ea em rwa nii llp npl liqa, lag(1 .)) iv(gdpgr cpi fedrate, diff) nocons
            You can then restrict the maximum lag order for the GMM-type instruments by specifying the suboption lag(1 10). Furthermore, you can add a second lag of the dependent variable and, say, the first lag of the next independent variable s as follows:
            Code:
            xtdpdgmm roa L(1/2).roa L(0/1).s ea em rwa nii llp npl liqa gdpgr cpi fedrate, model(diff) collapse gmm(L.roa s ea em rwa nii llp npl liqa, lag(1 10)) iv(gdpgr cpi fedrate, diff) nocons
            (It works similarly with xtabond2.)
            https://www.kripfganz.de/stata/

            Comment


            • #66
              Sebastian Kripfganz hi sir, thankyou so much for taking some time out to help me with this. I can't tell you how grateful I am. sir I ran the second command you recommended :
              xtdpdgmm roa L
              (1/2)
              .roa
              L(0/1)
              .s ea em rwa nii llp npl liqa gdpgr cpi fedrate, model(diff) collapse gmm(L.roa s ea em rwa nii llp npl liqa, lag(1
              10
              )) iv(gdpgr cpi fedrate, diff) nocons

              but my stata is not running it. No results are being formed. Itsomething wrong sir? Something I am missing out?

              Comment


              • #67
                Sebastian Kripfganz Hi sir, I managed to run this. and this cam eout. I do not have any p values to look at. So how will I know if my result is correct sir?



                xtdpdgmm roa L(1/2).roa L(0/1).s ea em rwa nii llp npl liqa gdpgr cpi fedrate, model(diff) collapse gmm(L.roa s ea em rwa nii l
                > lp npl liqa, lag(1 10)) iv(gdpgr cpi fedrate, diff) nocons
                note: standard errors may not be valid

                Generalized method of moments estimation

                Fitting full model:
                Step 1 f(b) = .00023949

                Group variable: bank Number of obs = 540555
                Time variable: quarter Number of groups = 14355

                Moment conditions: linear = 93 Obs per group: min = 1
                nonlinear = 0 avg = 37.65622
                total = 93 max = 62

                ------------------------------------------------------------------------------
                roa | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                -------------+----------------------------------------------------------------
                roa |
                L1. | .1238228 .001439 86.05 0.000 .1210024 .1266433
                L2. | -.1330753 .0013124 -101.40 0.000 -.1356476 -.1305029
                |
                s |
                --. | -.0056246 .0001765 -31.86 0.000 -.0059706 -.0052786
                L1. | .0028136 .0001346 20.91 0.000 .0025498 .0030773
                |
                ea | -.1206128 .0008507 -141.78 0.000 -.1222801 -.1189455
                em | .1717697 .0004793 358.41 0.000 .1708304 .172709
                rwa | .0115603 .000518 22.32 0.000 .0105451 .0125756
                nii | .0555345 .0008823 62.94 0.000 .0538052 .0572638
                llp | -.3433724 .0057227 -60.00 0.000 -.3545886 -.3321561
                npl | .1088755 .0033762 32.25 0.000 .1022584 .1154926
                liqa | .0081207 .0006465 12.56 0.000 .0068537 .0093878
                gdpgr | .0296602 .0009031 32.84 0.000 .0278901 .0314304
                cpi | .0000927 .0000169 5.47 0.000 .0000595 .0001259
                fedrate | .0005647 .000013 43.51 0.000 .0005393 .0005902
                ------------------------------------------------------------------------------
                Instruments corresponding to the linear moment conditions:
                1, model(diff):
                L1.L.roa L2.L.roa L3.L.roa L4.L.roa L5.L.roa L6.L.roa L7.L.roa L8.L.roa
                L9.L.roa L10.L.roa L1.s L2.s L3.s L4.s L5.s L6.s L7.s L8.s L9.s L10.s L1.ea
                L2.ea L3.ea L4.ea L5.ea L6.ea L7.ea L8.ea L9.ea L10.ea L1.em L2.em L3.em
                L4.em L5.em L6.em L7.em L8.em L9.em L10.em L1.rwa L2.rwa L3.rwa L4.rwa
                L5.rwa L6.rwa L7.rwa L8.rwa L9.rwa L10.rwa L1.nii L2.nii L3.nii L4.nii
                L5.nii L6.nii L7.nii L8.nii L9.nii L10.nii L1.llp L2.llp L3.llp L4.llp
                L5.llp L6.llp L7.llp L8.llp L9.llp L10.llp L1.npl L2.npl L3.npl L4.npl
                L5.npl L6.npl L7.npl L8.npl L9.npl L10.npl L1.liqa L2.liqa L3.liqa L4.liqa
                L5.liqa L6.liqa L7.liqa L8.liqa L9.liqa L10.liqa
                2, model(diff):
                D.gdpgr D.cpi D.fedrate

                .




                Comment


                • #68
                  After the estimation, you can obtain the Arellano-Bond serial-correlation test by typing estat serial and the Sargan-Hansen overidentification test by typing estat overid. See the help files for details:
                  Code:
                  help xtdpdgmm
                  help xtdpdgmm postestimation
                  https://www.kripfganz.de/stata/

                  Comment


                  • #69
                    Sebastian Kripfganz thankyou so much sebastian. I did manage to run it. But i'm getting this:
                    Arellano-Bond test for autocorrelation of the first-differenced residuals
                    H0: no autocorrelation of order 1: z = -174.1354 Prob > |z| = 0.0000
                    H0: no autocorrelation of order 2: z = 8.6543 Prob > |z| = 0.0000

                    Comment


                    • #70
                      Sebastian Kripfganz hi Sebastian, I tried changing my command for xtabond2 am i'm getting this currently
                      xtabond2 roa l2.roa l2.s l2.ea l2.em l2.rwa l2.nii l2.llp l2.npl l2.liqa l.gdpgr cpi fedrate, gmm(l2.roa l2.s l2.ea l2.em l2.rw
                      > a l2.nii l2.llp l2.npl l2.liqa cpi fedrate, collapse) iv(l.gdpgr) nolevel robust orthogonal nodiffsargan
                      Favoring speed over space. To switch, type or click on mata: mata set matafavor space, perm.
                      Warning: Two-step estimated covariance matrix of moments is singular.
                      Using a generalized inverse to calculate robust weighting matrix for Hansen test.

                      Dynamic panel-data estimation, one-step difference GMM
                      ------------------------------------------------------------------------------
                      Group variable: bank Number of obs = 526200
                      Time variable : quarter Number of groups = 14350
                      Number of instruments = 675 Obs per group: min = 0
                      Wald chi2(12) = 11235.47 avg = 36.67
                      Prob > chi2 = 0.000 max = 61
                      ------------------------------------------------------------------------------
                      | Robust
                      roa | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                      -------------+----------------------------------------------------------------
                      roa |
                      L2. | .0837446 .0143128 5.85 0.000 .055692 .1117971
                      |
                      s |
                      L2. | -.0023193 .0001565 -14.82 0.000 -.0026261 -.0020126
                      |
                      ea |
                      L2. | -.0535853 .0021153 -25.33 0.000 -.0577312 -.0494395
                      |
                      em |
                      L2. | -.1377931 .0033978 -40.55 0.000 -.1444526 -.1311335
                      |
                      rwa |
                      L2. | .002203 .0010015 2.20 0.028 .0002401 .0041659
                      |
                      nii |
                      L2. | .0042045 .002908 1.45 0.148 -.001495 .0099041
                      |
                      llp |
                      L2. | -.0519947 .0215567 -2.41 0.016 -.094245 -.0097443
                      |
                      npl |
                      L2. | -.1030135 .0057518 -17.91 0.000 -.1142869 -.0917401
                      |
                      liqa |
                      L2. | -.0008727 .0011141 -0.78 0.433 -.0030563 .001311
                      |
                      gdpgr |
                      L1. | .0334576 .002073 16.14 0.000 .0293947 .0375205
                      |
                      cpi | -.0005748 .0000222 -25.90 0.000 -.0006183 -.0005313
                      fedrate | .0003172 .0000212 14.95 0.000 .0002756 .0003588
                      ------------------------------------------------------------------------------
                      Instruments for orthogonal deviations equation
                      Standard
                      FOD.L.gdpgr
                      GMM-type (missing=0, separate instruments for each period unless collapsed)
                      L(1/63).(L2.roa L2.s L2.ea L2.em L2.rwa L2.nii L2.llp L2.npl L2.liqa cpi
                      fedrate) collapsed
                      ------------------------------------------------------------------------------
                      Arellano-Bond test for AR(1) in first differences: z = -36.76 Pr > z = 0.000
                      Arellano-Bond test for AR(2) in first differences: z = 0.93 Pr > z = 0.353
                      ------------------------------------------------------------------------------
                      Sargan test of overid. restrictions: chi2(663) = 1.4e+05 Prob > chi2 = 0.000
                      (Not robust, but not weakened by many instruments.)
                      Hansen test of overid. restrictions: chi2(663) =10944.79 Prob > chi2 = 0.000
                      (Robust, but weakened by many instruments.)



                      Comment


                      • #71
                        Just lagging the explanatory variables to avoid endogeneity problems is usually not a good idea. You are ruling out any contemporaneous effect of your right-hand side variables on the dependent variable which is usually not what you want. In particular for the lagged dependent variable, it does not seem to make sense to consider the second lag without the first lag as well.

                        Finding the right model specification is not a trivial task. I can only refer you again to the working paper by Jan Kiviet that I mentioned in my post #63 above.
                        https://www.kripfganz.de/stata/

                        Comment


                        • #72
                          Sebastian Kripfganz Hi sebestain..I followed your advice and kpt trying to change my model with econometrics logic and I mange to generate these 3 results...how do they look like to you? I still cant fixmy Hansen and sargan values. is it possible to have this problem if he data is too large?


                          1ST EXAMPLE
                          ---------+----------------------------------------------------------------
                          roa |
                          L1. | .0221422 .0092792 2.39 0.017 .0039552 .0403291
                          |
                          s | -.0176074 .0020485 -8.60 0.000 -.0216225 -.0135923
                          ea | -.5913272 .0668993 -8.84 0.000 -.7224475 -.460207
                          em | .0886635 .0057107 15.53 0.000 .0774707 .0998562
                          rwa | .0121 .0067143 1.80 0.072 -.0010597 .0252597
                          nii | .0534196 .0135918 3.93 0.000 .0267801 .0800591
                          llp | -.3173799 .3699567 -0.86 0.391 -1.042482 .407722
                          npl | .2611848 .0756351 3.45 0.001 .1129428 .4094268
                          liqa | .0029404 .0052084 0.56 0.572 -.0072678 .0131487
                          stdclroa | 4.017047 .9251678 4.34 0.000 2.203752 5.830343
                          lz | .074447 .0025463 29.24 0.000 .0694564 .0794376
                          ne | .0000203 9.43e-06 2.16 0.031 1.86e-06 .0000388
                          ic | -1.59e-06 9.59e-07 -1.65 0.098 -3.47e-06 2.94e-07
                          tier2rbcr | 2.003676 .9355492 2.14 0.032 .170033 3.837319
                          gdpgr | -.0447042 .0092033 -4.86 0.000 -.0627423 -.026666
                          tvlgdp | -2.77e-06 6.94e-07 -4.00 0.000 -4.14e-06 -1.41e-06
                          cpi | .0005689 .0000949 6.00 0.000 .000383 .0007548
                          fedrate | .0005184 .0001031 5.03 0.000 .0003164 .0007204
                          ------------------------------------------------------------------------------
                          Instruments for orthogonal deviations equation
                          Standard
                          FOD.(gdpgr cpi liqa npl rwa fedrate ic tvlgdp)
                          GMM-type (missing=0, separate instruments for each period unless collapsed)
                          L2.(L.roa nii)
                          ------------------------------------------------------------------------------
                          Arellano-Bond test for AR(1) in first differences: z = -1.40 Pr > z = 0.161
                          Arellano-Bond test for AR(2) in first differences: z = -0.00 Pr > z = 0.997
                          ------------------------------------------------------------------------------
                          Sargan test of overid. restrictions: chi2(76) = 883.67 Prob > chi2 = 0.000
                          (Not robust, but not weakened by many instruments.)
                          Hansen test of overid. restrictions: chi2(76) = 660.43 Prob > chi2 = 0.000
                          (Robust, but weakened by many instruments.)



                          2ND EXAMPLE
                          ----------------------------------------------------------------------------
                          | Robust
                          roa | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                          -------------+----------------------------------------------------------------
                          roa |
                          L1. | .0227859 .0092686 2.46 0.014 .0046198 .0409521
                          |
                          s | -.017641 .0020664 -8.54 0.000 -.0216911 -.0135909
                          ea | -.5941819 .0653727 -9.09 0.000 -.7223101 -.4660537
                          em | .088608 .0057319 15.46 0.000 .0773737 .0998422
                          rwa | .011926 .0067904 1.76 0.079 -.0013829 .025235
                          nii | .0516477 .0132199 3.91 0.000 .0257372 .0775581
                          llp | -.3287297 .3768005 -0.87 0.383 -1.067245 .4097857
                          npl | .2628361 .0767282 3.43 0.001 .1124516 .4132206
                          liqa | .0031781 .0052995 0.60 0.549 -.0072088 .013565
                          stdclroa | 4.042031 .9247331 4.37 0.000 2.229587 5.854474
                          lz | .0745333 .0025765 28.93 0.000 .0694835 .0795831
                          ne | .0000206 9.54e-06 2.15 0.031 1.85e-06 .0000393
                          tier2rbcr | 1.991092 .9436256 2.11 0.035 .1416197 3.840564
                          gdpgr | -.0440909 .0092653 -4.76 0.000 -.0622506 -.0259313
                          tvlgdp | -2.83e-06 6.89e-07 -4.10 0.000 -4.18e-06 -1.48e-06
                          cpi | .0005739 .0000955 6.01 0.000 .0003868 .0007611
                          fedrate | .0005052 .0001032 4.89 0.000 .0003029 .0007075
                          ------------------------------------------------------------------------------
                          Instruments for orthogonal deviations equation
                          Standard
                          FOD.(gdpgr cpi liqa npl rwa fedrate tvlgdp)
                          GMM-type (missing=0, separate instruments for each period unless collapsed)
                          L2.(L.roa nii)
                          ------------------------------------------------------------------------------
                          Arellano-Bond test for AR(1) in first differences: z = -1.39 Pr > z = 0.166
                          Arellano-Bond test for AR(2) in first differences: z = 0.02 Pr > z = 0.985
                          ------------------------------------------------------------------------------
                          Sargan test of overid. restrictions: chi2(76) = 875.88 Prob > chi2 = 0.000
                          (Not robust, but not weakened by many instruments.)
                          Hansen test of overid. restrictions: chi2(76) = 660.45 Prob > chi2 = 0.000
                          (Robust, but weakened by many instruments.)



                          3RD EXAMPLE:

                          | Robust
                          roa | Coef. Std. Err. z P>|z| [95% Conf. Interval]
                          -------------+----------------------------------------------------------------
                          roa |
                          L1. | .0709386 .0186184 3.81 0.000 .0344471 .1074301
                          |
                          s | .1931949 .0860361 2.25 0.025 .0245672 .3618226
                          s2 | -.0082616 .0035144 -2.35 0.019 -.0151497 -.0013734
                          ea | -.4951826 .0604164 -8.20 0.000 -.6135965 -.3767686
                          ic | -2.06e-07 5.52e-07 -0.37 0.709 -1.29e-06 8.75e-07
                          em | .2072974 .0116413 17.81 0.000 .1844808 .230114
                          rwa | -.0193173 .0165228 -1.17 0.242 -.0517014 .0130668
                          rwa2 | .0186785 .0106472 1.75 0.079 -.0021897 .0395466
                          nii | .0472684 .0113066 4.18 0.000 .0251079 .0694289
                          llp | -.2983686 .3374817 -0.88 0.377 -.9598206 .3630833
                          npl | .0087433 .0630474 0.14 0.890 -.1148273 .1323139
                          liqa | -.0117054 .0045072 -2.60 0.009 -.0205394 -.0028715
                          stdclroa | 3.799513 .5276648 7.20 0.000 2.765309 4.833717
                          lz | .0362032 .0039309 9.21 0.000 .0284988 .0439076
                          ne | .000027 .0000125 2.16 0.030 2.55e-06 .0000515
                          tier2rbcr | 1.981242 1.485374 1.33 0.182 -.9300373 4.892522
                          gdpgr | .0117935 .0078676 1.50 0.134 -.0036267 .0272137
                          tvlgdp | -2.58e-08 1.27e-06 -0.02 0.984 -2.51e-06 2.46e-06
                          cpi | .0005617 .0000857 6.55 0.000 .0003938 .0007297
                          fedrate | .0003626 .000127 2.86 0.004 .0001137 .0006115
                          ------------------------------------------------------------------------------
                          Instruments for orthogonal deviations equation
                          Standard
                          FOD.(gdpgr cpi liqa npl rwa ic fedrate tvlgdp rwa2 s2)
                          GMM-type (missing=0, separate instruments for each period unless collapsed)
                          L(1/63).(L.roa nii) collapsed
                          ------------------------------------------------------------------------------
                          Arellano-Bond test for AR(1) in first differences: z = -1.71 Pr > z = 0.088
                          Arellano-Bond test for AR(2) in first differences: z = 0.57 Pr > z = 0.570
                          ------------------------------------------------------------------------------
                          Sargan test of overid. restrictions: chi2(115) = 618.16 Prob > chi2 = 0.000
                          (Not robust, but not weakened by many instruments.)
                          Hansen test of overid. restrictions: chi2(115) =1537.79 Prob > chi2 = 0.000
                          (Robust, but weakened by many instruments.)



                          What is your opinion on these sir?

                          Comment


                          • #73
                            As mentioned ealier, besides the potential incorrect classification of endogenous regressors as predetermined or exogenous, a likely cause of model misspecification is omitted dynamics, i.e. additional lags of the variables as regressors. Another reason might be that there are further omitted variables that are not in the data set. This would be much harder to fix.

                            Also note that you would usually want to use the two-step instead of the one-step estimator, in particular when your sample is very large, because the one-step estimator is generally inefficient (unless the quite strong assumption of homoskedasticity is justified). I am afraid that I will probably not be able to help much further because finding the best specification is really data specific. I recommend that you discuss your results and further steps with your thesis advisor.
                            https://www.kripfganz.de/stata/

                            Comment


                            • #74
                              Sebastian Kripfganz thaankyou so much for all your time and advice. I appreciate your help so much

                              Comment


                              • #75
                                Another update to version 2.2.2 with a few bug fixes is now available on SSC and my personal website:
                                Code:
                                adoupdate xtdpdgmm, update
                                You can now also find my presentation slides from this year's London Stata Conference online that provide detailed information on the xtdpdgmm command and the econometrics behind it. If you find this command useful, I would be happy if you could add a reference in your work:
                                https://www.kripfganz.de/stata/

                                Comment

                                Working...
                                X