Hello all, I am running a single level logit model cluster at kindergarten level. Below is the model output.
Based from the model results, it seems none of the interaction terms is significant. So, I suppose the plot by racial groups generated based on the model should have parallel lines.
Below is the plot I generated using margins and marginsplot.

Is the plot correct based on the model result? Shouldn't the lines be parallel instead of crossing over? Is it always the case that if no interaction effects is significant, the lines should not cross each other?
Code:
logit gedtimehi c.grade##c.grade ib6.RACE ib6.RACE#c.grade ib6.RACE#c.grade#c.grade, cluster(kinde > rgarten) Iteration 0: log pseudolikelihood = -6318.348 Iteration 1: log pseudolikelihood = -6219.052 Iteration 2: log pseudolikelihood = -6218.0061 Iteration 3: log pseudolikelihood = -6218.0061 Logistic regression Number of obs = 11088 Wald chi2(11) = 76.81 Prob > chi2 = 0.0000 Log pseudolikelihood = -6218.0061 Pseudo R2 = 0.0159 (Std. Err. adjusted for 41 clusters in kindergarten) -------------------------------------------------------------------------------------------- | Robust gedtimehi | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------------------------+---------------------------------------------------------------- gradelvl | .1603621 .0765065 2.10 0.036 .0104121 .310312 | c.gradelvl#c.gradelvl | -.0272459 .0092321 -2.95 0.003 -.0453405 -.0091512 | RACE | African American | -.4808764 .1205788 -3.99 0.000 -.7172065 -.2445462 Asian | -.2261637 .1346057 -1.68 0.093 -.4899861 .0376587 Hispanic | .0902261 .1429301 0.63 0.528 -.1899117 .370364 | RACE#c.gradelvl | African American | -.0361761 .0762349 -0.47 0.635 -.1855937 .1132415 Asian | .1960031 .1015358 1.93 0.054 -.0030035 .3950097 Hispanic | -.0600909 .0959935 -0.63 0.531 -.2482346 .1280528 | RACE#c.gradelvl#c.gradelvl | African American | .0081719 .0094204 0.87 0.386 -.0102918 .0266357 Asian | -.02058 .0134071 -1.54 0.125 -.0468575 .0056974 Hispanic | .0001009 .012092 0.01 0.993 -.0235989 .0238007 | _cons | 1.156505 .157408 7.35 0.000 .8479907 1.465019 --------------------------------------------------------------------------------------------
Below is the plot I generated using margins and marginsplot.
Code:
. margins RACE, at(grade=(0(1)9)) Adjusted predictions Number of obs = 11088 Model VCE : Robust Expression : Pr(gedtimehi), predict() 1._at : gradelvl = 0 2._at : gradelvl = 1 3._at : gradelvl = 2 4._at : gradelvl = 3 5._at : gradelvl = 4 6._at : gradelvl = 5 7._at : gradelvl = 6 8._at : gradelvl = 7 9._at : gradelvl = 8 10._at : gradelvl = 9 -------------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- _at#RACE | 1#African American | .6627623 .0450391 14.72 0.000 .5744873 .7510373 1#Asian | .7171445 .0382939 18.73 0.000 .6420897 .7921992 1#Hispanic | .7767334 .0330955 23.47 0.000 .7118675 .8415994 1#White | .760697 .0286541 26.55 0.000 .704536 .816858 2#African American | .6858397 .035863 19.12 0.000 .6155494 .7561299 2#Asian | .7753691 .0274055 28.29 0.000 .7216552 .8290829 2#Hispanic | .7891579 .0260394 30.31 0.000 .7381217 .8401942 2#White | .784083 .0215603 36.37 0.000 .7418256 .8263405 3#African American | .7000854 .0304276 23.01 0.000 .6404483 .7597225 3#Asian | .8102704 .0224043 36.17 0.000 .7663588 .854182 3#Hispanic | .792275 .0227092 34.89 0.000 .7477658 .8367842 3#White | .7970965 .0197392 40.38 0.000 .7584084 .8357846 4#African American | .7061007 .02703 26.12 0.000 .6531229 .7590786 4#Asian | .8276415 .0201961 40.98 0.000 .788058 .867225 4#Hispanic | .7863797 .02188 35.94 0.000 .7434958 .8292637 4#White | .8009716 .0201024 39.84 0.000 .7615715 .8403717 5#African American | .7041605 .024499 28.74 0.000 .6561433 .7521777 5#Asian | .8306987 .0193026 43.04 0.000 .7928664 .8685311 5#Hispanic | .770917 .0227636 33.87 0.000 .7263012 .8155328 5#White | .7960876 .0207723 38.32 0.000 .7553746 .8368007 6#African American | .6941747 .0228595 30.37 0.000 .6493708 .7389786 6#Asian | .8200254 .0197917 41.43 0.000 .7812345 .8588163 6#Hispanic | .7444948 .025372 29.34 0.000 .6947667 .7942229 6#White | .7819674 .0212253 36.84 0.000 .7403665 .8235683 7#African American | .6757004 .0240232 28.13 0.000 .6286159 .722785 7#Asian | .793606 .0234798 33.80 0.000 .7475864 .8396255 7#Hispanic | .7049829 .0306699 22.99 0.000 .6448709 .7650948 7#White | .7572802 .0221361 34.21 0.000 .7138943 .8006661 8#African American | .6480108 .0311325 20.81 0.000 .5869922 .7090294 8#Asian | .7467642 .0339852 21.97 0.000 .6801545 .813374 8#Hispanic | .6498835 .0401807 16.17 0.000 .5711308 .7286362 8#White | .7199052 .0260306 27.66 0.000 .6688862 .7709242 9#African American | .6102549 .0455753 13.39 0.000 .5209289 .6995809 9#Asian | .6726963 .0546883 12.30 0.000 .5655092 .7798833 9#Hispanic | .5772817 .0547091 10.55 0.000 .4700537 .6845096 9#White | .667226 .0366886 18.19 0.000 .5953177 .7391344 10#African American | .5617611 .0666693 8.43 0.000 .4310916 .6924306 10#Asian | .5655531 .0850815 6.65 0.000 .3987964 .7323098 10#Hispanic | .4876104 .0726647 6.71 0.000 .3451903 .6300306 10#White | .596968 .0557985 10.70 0.000 .487605 .7063311 -------------------------------------------------------------------------------------- . marginsplot, noci recast(line)
Is the plot correct based on the model result? Shouldn't the lines be parallel instead of crossing over? Is it always the case that if no interaction effects is significant, the lines should not cross each other?
Comment