Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • #16

    .
    . // w/o fixed effects
    . logit reemp3 i.hid##i.postperiod_nc b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.
    > uh_occmaj_b2 sampjl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate
    > _jhu stringd if cutoff3==1 & sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or

    note: 11.uh_occmaj_b2 omitted because of collinearity.
    Iteration 0: log pseudolikelihood = -4548831
    Iteration 1: log pseudolikelihood = -4170013
    Iteration 2: log pseudolikelihood = -4157356.2
    Iteration 3: log pseudolikelihood = -4157310.4
    Iteration 4: log pseudolikelihood = -4157310.4

    Logistic regression Number of obs = 2,956
    Wald chi2(18) = .
    Prob > chi2 = .
    Log pseudolikelihood = -4157310.4 Pseudo R2 = 0.0861

    (Std. err. adjusted for 19 clusters in statefip)
    --------------------------------------------------------------------------------------------------------------------
    | Robust
    reemp3 | Odds ratio std. err. z P>|z| [95% conf. interval]
    ---------------------------------------------------+----------------------------------------------------------------
    1.hid | .7002702 .114058 -2.19 0.029 .5088906 .9636225
    1.postperiod_nc | 1.085203 .14369 0.62 0.537 .8371528 1.406751
    |
    hid#postperiod_nc |
    1 1 | 1.76205 .2849347 3.50 0.000 1.283434 2.419151
    |
    age_group |
    18-24 | 1.189933 .2482025 0.83 0.404 .7906317 1.790897
    25-34 | .9796921 .1556727 -0.13 0.897 .71752 1.337658
    45-54 | .7759897 .1527095 -1.29 0.197 .5276492 1.141213
    55-64 | .7718687 .0945646 -2.11 0.035 .607099 .9813577
    |
    race_wbho |
    2 black nh | .7084502 .2038549 -1.20 0.231 .4030677 1.245204
    3 hispanic/latino | 1.117986 .2082969 0.60 0.549 .7759704 1.610747
    other nh | .8385216 .1684342 -0.88 0.381 .5656309 1.24307
    |
    edu4 |
    1 Less than HS | .8186407 .0904471 -1.81 0.070 .6592479 1.016572
    2 HS or GED | .7338577 .0427831 -5.31 0.000 .6546176 .8226896
    3 Some college or Associate's' | .8120404 .104228 -1.62 0.105 .631427 1.044317
    |
    1.woman | .8752548 .1934259 -0.60 0.547 .5675762 1.349724
    1.marstdum1 | .8993397 .1351362 -0.71 0.480 .6699168 1.207332
    |
    woman#marstdum1 |
    1 1 | .872963 .1282346 -0.92 0.355 .6545727 1.164217
    |
    ownkidd_18 |
    1: Own children, <18, in HH | .7575139 .1594339 -1.32 0.187 .5014622 1.144308
    |
    woman#ownkidd_18 |
    1#1: Own children, <18, in HH | 1.289486 .3991002 0.82 0.411 .7030191 2.365192
    |
    marstdum1#ownkidd_18 |
    1#1: Own children, <18, in HH | 1.750866 .3841515 2.55 0.011 1.138921 2.69161
    |
    woman#marstdum1#ownkidd_18 |
    1#1#1: Own children, <18, in HH | .7332693 .2613196 -0.87 0.384 .3646831 1.474387
    |
    ind_nilf |
    2 | 1.80553 .8799177 1.21 0.225 .6946644 4.692824
    3 | 1.489625 .8054717 0.74 0.461 .5161959 4.298724
    4 | 1.444288 .6722382 0.79 0.430 .5800495 3.596187
    5 | 1.139385 .6526263 0.23 0.820 .3707763 3.501295
    6 | .7451345 .4014118 -0.55 0.585 .259229 2.141834
    7 | 1.026434 .7175636 0.04 0.970 .2607773 4.040102
    8 | 1.331666 .8172223 0.47 0.641 .3999691 4.433678
    9 | 1.314533 .6161779 0.58 0.560 .524538 3.294322
    10 | 1.808758 .920045 1.17 0.244 .6674326 4.901778
    11 | 1.227343 .6951168 0.36 0.718 .4044647 3.72436
    12 | 1.08146 .5506855 0.15 0.878 .3986332 2.933912
    13 | 2.524114 1.81093 1.29 0.197 .6186045 10.29923
    14 | 2.682423 3.342496 0.79 0.428 .2332746 30.84515
    |
    uh_occmaj_b2 |
    professional and related occupations | 1.379627 .2331624 1.90 0.057 .990616 1.921401
    service occupations | 1.010886 .187832 0.06 0.954 .7023298 1.455001
    sales and related occupations | 1.676742 .1986558 4.36 0.000 1.329285 2.115019
    office and administrative support occupations | 1.205044 .1652741 1.36 0.174 .9209989 1.576692
    farming, fishing, and forestry occupations | 5.054637 3.232456 2.53 0.011 1.443258 17.70256
    construction and extraction occupations | 1.431595 .4407435 1.17 0.244 .783 2.617451
    installation, maintenance, and repair occupations | 1.760672 .3638247 2.74 0.006 1.17432 2.639797
    production occupations | 1.031621 .3635775 0.09 0.930 .5170455 2.058315
    transportation and material moving occupations | 1.322369 .5263619 0.70 0.483 .6060893 2.885153
    armed forces | 1 (omitted)
    |
    sampjl | 1.226923 .0954013 2.63 0.009 1.053491 1.428907
    |
    durg |
    5-8 weeks | .6224303 .0846339 -3.49 0.000 .4768151 .8125151
    9-12 weeks | .6074873 .0809467 -3.74 0.000 .4678601 .7887845
    13-16 weeks | .392522 .0648597 -5.66 0.000 .2839311 .5426441
    17-20 weeks | .7426054 .1475274 -1.50 0.134 .5031029 1.096123
    21-26 weeks | .3930069 .0960117 -3.82 0.000 .2434733 .6343793
    27-32 weeks | .3316027 .0958552 -3.82 0.000 .188176 .5843485
    33-38 weeks | .6463835 .1520183 -1.86 0.064 .4076639 1.024892
    39-44 weeks | .3309865 .048453 -7.55 0.000 .2484296 .4409784
    45-50 weeks | .2701556 .095354 -3.71 0.000 .1352615 .5395775
    51-52 weeks | .2260038 .0388606 -8.65 0.000 .1613446 .3165753
    >52 weeks | .2853079 .0616351 -5.81 0.000 .1868223 .4357114
    |
    ur_sa | 1.3e-114 2.1e-112 -1.62 0.105 3.0e-252 5.32e+23
    ur2_sa | . . 1.49 0.136 0 .
    ur3_sa | 0 0 -1.48 0.140 0 .
    iur | 3.75e+89 3.27e+91 2.37 0.018 2.75e+15 5.1e+163
    iur2 | 0 0 -1.77 0.076 0 .
    iur3 | . . 1.50 0.133 0 .
    initrate | 4.69e-85 1.08e-82 -0.84 0.400 1.8e-281 1.2e+112
    initrate2 | . . 0.57 0.569 0 .
    initrate3 | 0 0 -0.27 0.783 0 .
    empgrowth | .8336209 .2227394 -0.68 0.496 .493778 1.407361
    emp2 | .5464889 .2964898 -1.11 0.265 .188701 1.582664
    emp3 | 3.837721 2.121437 2.43 0.015 1.298798 11.3398
    l_incrate_jhu | 1.055488 .0706493 0.81 0.420 .9257159 1.203451
    stringd | .9955981 .0077031 -0.57 0.569 .9806141 1.010811
    _cons | 10.81872 22.86949 1.13 0.260 .1717268 681.5756
    --------------------------------------------------------------------------------------------------------------------
    Note: _cons estimates baseline odds.

    . margins hid, dydx(postperiod_nc) pwcompare(cimargins effects)

    Pairwise comparisons of average marginal effects

    Model VCE: Robust Number of obs = 2,956

    Expression: Pr(reemp3), predict()
    dy/dx wrt: 1.postperiod_nc

    ------------------------------------------------------------------
    | Delta-method Unadjusted
    | Margin std. err. [95% conf. interval]
    -----------------+------------------------------------------------
    0.postperiod_nc | (base outcome)
    -----------------+------------------------------------------------
    1.postperiod_nc |
    hid |
    0 | .0146819 .0236426 -.0316568 .0610206
    1 | .1128607 .0323135 .0495273 .176194
    ------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base
    level.

    ----------------------------------------------------------------------------------
    | Contrast Delta-method Unadjusted Unadjusted
    | dy/dx std. err. z P>|z| [95% conf. interval]
    -----------------+----------------------------------------------------------------
    0.postperiod_nc | (base outcome)
    -----------------+----------------------------------------------------------------
    1.postperiod_nc |
    hid |
    1 vs 0 | .0981788 .0263574 3.72 0.000 .0465191 .1498384
    ----------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.

    .
    . // w/ fixed effects
    .
    . logit reemp3 i.hid##i.postperiod_nc b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 samp
    > jl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate_jhu stringd i.year_month i.statef
    > ip if cutoff3==1 & sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or

    note: 11.uh_occmaj_b2 omitted because of collinearity.
    note: 743.year_month omitted because of collinearity.
    note: 56.statefip omitted because of collinearity.
    Iteration 0: log pseudolikelihood = -4548831
    Iteration 1: log pseudolikelihood = -4102581.7
    Iteration 2: log pseudolikelihood = -4084868
    Iteration 3: log pseudolikelihood = -4084825.4
    Iteration 4: log pseudolikelihood = -4084825.4

    Logistic regression Number of obs = 2,956
    Wald chi2(17) = .
    Prob > chi2 = .
    Log pseudolikelihood = -4084825.4 Pseudo R2 = 0.1020

    (Std. err. adjusted for 19 clusters in statefip)
    --------------------------------------------------------------------------------------------------------------------
    | Robust
    reemp3 | Odds ratio std. err. z P>|z| [95% conf. interval]
    ---------------------------------------------------+----------------------------------------------------------------
    1.hid | 1.363283 .853181 0.50 0.620 .3998342 4.648277
    1.postperiod_nc | 1.190843 .896832 0.23 0.817 .2721503 5.21075
    |
    hid#postperiod_nc |
    1 1 | 1.515065 .3011399 2.09 0.037 1.026227 2.236759
    |
    age_group |
    18-24 | 1.154654 .2576464 0.64 0.519 .7456195 1.788079
    25-34 | .9550559 .1663373 -0.26 0.792 .6788585 1.343626
    45-54 | .7404937 .1489847 -1.49 0.135 .4991862 1.098449
    55-64 | .760808 .1021689 -2.04 0.042 .584746 .9898808
    |
    race_wbho |
    2 black nh | .6754881 .2079867 -1.27 0.203 .3694263 1.235116
    3 hispanic/latino | 1.11792 .2185224 0.57 0.569 .7621217 1.639823
    other nh | .8637687 .1747419 -0.72 0.469 .5810292 1.284094
    |
    edu4 |
    1 Less than HS | .8184452 .0919283 -1.78 0.074 .6567228 1.019993
    2 HS or GED | .754165 .0455528 -4.67 0.000 .6699655 .8489466
    3 Some college or Associate's' | .7973805 .1008995 -1.79 0.074 .6222367 1.021823
    |
    1.woman | .8557501 .197819 -0.67 0.500 .5439757 1.346215
    1.marstdum1 | .860779 .1430002 -0.90 0.367 .6215592 1.192067
    |
    woman#marstdum1 |
    1 1 | .9441973 .1355173 -0.40 0.689 .7126771 1.250929
    |
    ownkidd_18 |
    1: Own children, <18, in HH | .7535746 .1801115 -1.18 0.237 .4717165 1.203848
    |
    woman#ownkidd_18 |
    1#1: Own children, <18, in HH | 1.305396 .4099412 0.85 0.396 .7053983 2.41574
    |
    marstdum1#ownkidd_18 |
    1#1: Own children, <18, in HH | 1.858785 .4656817 2.47 0.013 1.137568 3.037252
    |
    woman#marstdum1#ownkidd_18 |
    1#1#1: Own children, <18, in HH | .6876562 .237751 -1.08 0.279 .3492015 1.35415
    |
    ind_nilf |
    2 | 1.72103 .8403619 1.11 0.266 .6609292 4.481483
    3 | 1.449865 .7524491 0.72 0.474 .5242905 4.009434
    4 | 1.450273 .6554781 0.82 0.411 .5980441 3.516951
    5 | 1.071389 .5806708 0.13 0.899 .370351 3.099424
    6 | .7484345 .4048173 -0.54 0.592 .2592694 2.16051
    7 | .9208347 .6650484 -0.11 0.909 .2235754 3.79262
    8 | 1.248736 .7569864 0.37 0.714 .3806013 4.097046
    9 | 1.248748 .5320873 0.52 0.602 .5417271 2.878518
    10 | 1.690555 .8468961 1.05 0.295 .6333062 4.512789
    11 | 1.160456 .6042375 0.29 0.775 .4182318 3.219886
    12 | 1.043095 .4884148 0.09 0.928 .4166396 2.611483
    13 | 2.574455 1.849768 1.32 0.188 .6296358 10.52643
    14 | 2.527685 3.110576 0.75 0.451 .2265853 28.19772
    |
    uh_occmaj_b2 |
    professional and related occupations | 1.277662 .2232481 1.40 0.161 .9071608 1.799484
    service occupations | .9704075 .172422 -0.17 0.866 .6850348 1.374661
    sales and related occupations | 1.607134 .1877029 4.06 0.000 1.278313 2.020538
    office and administrative support occupations | 1.087359 .1455379 0.63 0.531 .8364569 1.413521
    farming, fishing, and forestry occupations | 4.731459 3.031178 2.43 0.015 1.347964 16.60778
    construction and extraction occupations | 1.372525 .4213739 1.03 0.302 .7519625 2.505213
    installation, maintenance, and repair occupations | 1.819833 .3236284 3.37 0.001 1.284277 2.57872
    production occupations | .9760549 .3437679 -0.07 0.945 .489418 1.946564
    transportation and material moving occupations | 1.18488 .5009526 0.40 0.688 .5173652 2.713638
    armed forces | 1 (omitted)
    |
    sampjl | 1.235291 .0960775 2.72 0.007 1.060633 1.438711
    |
    durg |
    5-8 weeks | .6175598 .0764235 -3.89 0.000 .4845539 .7870746
    9-12 weeks | .573018 .0730965 -4.37 0.000 .4462576 .7357851
    13-16 weeks | .3682188 .0563458 -6.53 0.000 .2728053 .4970032
    17-20 weeks | .7157984 .1500094 -1.60 0.111 .4746844 1.079385
    21-26 weeks | .3962775 .1000765 -3.67 0.000 .2415659 .6500745
    27-32 weeks | .3204143 .0910676 -4.00 0.000 .1835628 .5592924
    33-38 weeks | .6623046 .1438541 -1.90 0.058 .432688 1.013773
    39-44 weeks | .3340678 .0477242 -7.67 0.000 .2524839 .4420135
    45-50 weeks | .2608159 .0960372 -3.65 0.000 .1267378 .5367375
    51-52 weeks | .2183251 .0382605 -8.68 0.000 .1548583 .3078032
    >52 weeks | .2775561 .0575554 -6.18 0.000 .1848594 .4167351
    |
    ur_sa | 9.3e-137 1.9e-134 -1.51 0.132 0 9.23e+40
    ur2_sa | . . 1.47 0.142 0 .
    ur3_sa | 0 0 -1.41 0.159 0 .
    iur | 4.69e+61 5.38e+63 1.24 0.216 9.06e-37 2.4e+159
    iur2 | 0 0 -1.49 0.135 0 .
    iur3 | . . 1.72 0.086 0 .
    initrate | 1.3e-182 5.2e-180 -1.04 0.296 0 2.3e+159
    initrate2 | . . 0.36 0.721 0 .
    initrate3 | . . 0.15 0.884 0 .
    empgrowth | .8911005 .2501308 -0.41 0.681 .5140383 1.544749
    emp2 | .7129206 .4328587 -0.56 0.577 .216882 2.343467
    emp3 | 2.539794 1.524825 1.55 0.121 .7829963 8.238293
    l_incrate_jhu | 1.346398 .1901113 2.11 0.035 1.020902 1.775673
    stringd | 1.005602 .0117884 0.48 0.634 .9827604 1.028974
    |
    year_month |
    733 | 1.801917 .6005156 1.77 0.077 .9376901 3.462664
    734 | 2.949058 1.240613 2.57 0.010 1.293001 6.726168
    735 | 1.784082 .985896 1.05 0.295 .6039973 5.269806
    736 | 1.585574 .8542007 0.86 0.392 .5515898 4.557815
    737 | 3.09659 2.044644 1.71 0.087 .848877 11.29595
    738 | 1.951316 .6909715 1.89 0.059 .9747931 3.906094
    739 | 1.243383 .4608763 0.59 0.557 .6013063 2.57107
    740 | .7325305 .237433 -0.96 0.337 .3880862 1.382685
    741 | 1.020987 .2614713 0.08 0.935 .6180601 1.686592
    742 | .5790098 .1456082 -2.17 0.030 .3536939 .9478601
    743 | 1 (omitted)
    |
    statefip |
    arkansas | .7620739 .4846789 -0.43 0.669 .2190953 2.650704
    georgia | 1.993363 1.169071 1.18 0.240 .6314983 6.29217
    idaho | .6017506 .2258307 -1.35 0.176 .2883829 1.255635
    iowa | 1.170538 .6345026 0.29 0.771 .4045597 3.386791
    mississippi | .5234015 .2161406 -1.57 0.117 .2329851 1.175823
    missouri | .6861566 .080447 -3.21 0.001 .545288 .8634171
    montana | 1.566844 .62883 1.12 0.263 .7135241 3.440671
    nebraska | .3698216 .3209596 -1.15 0.252 .0674923 2.026424
    new hampshire | .3050378 .1093237 -3.31 0.001 .1511083 .6157707
    north dakota | .8408417 .2529818 -0.58 0.564 .4662465 1.516397
    oklahoma | .8012217 .1718301 -1.03 0.301 .5262644 1.219836
    south carolina | .4746652 .1458261 -2.43 0.015 .2599455 .8667473
    south dakota | 1.380745 .4087072 1.09 0.276 .7729541 2.466455
    tennessee | .7050458 .0614784 -4.01 0.000 .5942845 .8364504
    texas | .9461441 .9494129 -0.06 0.956 .1323778 6.76238
    utah | .4557265 .3427238 -1.04 0.296 .1043681 1.989942
    west virginia | .8811689 .6934727 -0.16 0.872 .1884389 4.12048
    wyoming | 1 (omitted)
    |
    _cons | 7.352945 32.34522 0.45 0.650 .0013246 40818.06
    --------------------------------------------------------------------------------------------------------------------
    Note: _cons estimates baseline odds.

    . margins hid, dydx(postperiod_nc) pwcompare(cimargins effects)

    Pairwise comparisons of average marginal effects

    Model VCE: Robust Number of obs = 2,956

    Expression: Pr(reemp3), predict()
    dy/dx wrt: 1.postperiod_nc

    ------------------------------------------------------------------
    | Delta-method Unadjusted
    | Margin std. err. [95% conf. interval]
    -----------------+------------------------------------------------
    0.postperiod_nc | (base outcome)
    -----------------+------------------------------------------------
    1.postperiod_nc |
    hid |
    0 | . (not estimable)
    1 | . (not estimable)
    ------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base
    level.

    ----------------------------------------------------------------------------------
    | Contrast Delta-method Unadjusted Unadjusted
    | dy/dx std. err. z P>|z| [95% conf. interval]
    -----------------+----------------------------------------------------------------
    0.postperiod_nc | (base outcome)
    -----------------+----------------------------------------------------------------
    1.postperiod_nc |
    hid |
    1 vs 0 | . (not estimable)
    ----------------------------------------------------------------------------------
    Note: dy/dx for factor levels is the discrete change from the base level.

    .
    end of do-file
    Last edited by Claire McKenna; 29 Nov 2022, 11:30.

    Comment


    • #17
      Thank you, but, as I said, I also need to see the complete outputs of the two -logit- commands.

      Comment


      • #18
        Thanks Clyde. Isn’t my most recent (long) post just that? I tried to copy and paste the output into the window :/. What should I do differently?

        Comment


        • #19
          Isn’t my most recent (long) post just that? I tried to copy and paste the output into the window...
          Well, although you completed post #16 at 9:30, when I gave my reply in #17 at 9:35, it was not showing up in my browser. The last post I could see at that point was #15. But yes, what you show in #16 is what was needed.

          note: 743.year_month omitted because of collinearity.
          note: 56.statefip omitted because of collinearity.
          These are the signs of what is wrong. The variables year_month and statefip both ended up having to have an additional level, other than the base category, omitted due to colinearity. That makes all the -margins- undefined, and Stata is appropriately refusing to produce some meaningless statistics for you. So the question is, what are year_month and state_fip collinear with. When a time fixed effect like year_month is colinear with something, that something us usually a variable that designates a subdivision of the timeline into periods. So if one of your variables is 0 before a certain cutoff time and after that (or similar situations), then that establishes the colinearity. When a location fixed effect like state_fip is colinear, it usually means that there is some variable that distinguishes subgroups of states (e.g maybe census region, or Republican governor vs Democratic governor, or something like that.)

          The names of most of your variables do not convey any meaning to me, so I can't fully guide you as to which ones are the likely culprits. But my guess is that the offending variables will turn out to be i.hid (Does an hid ever change state?) and i.postperiod_nc (in a standard DID analysis this would normally be colinear with the time variable.) These seem likely. And, evidently, you cannot meaningfully remove them from the analysis. In this situation, you can overcome the problem by adding the -noestimcheck- to the specific -margins- command you are using, and what you get will actually be OK. But do not do that more generally, because most of the things that -margins- declares as inestimable really are undefined and cannot be estimated.
          Last edited by Clyde Schechter; 29 Nov 2022, 13:09.

          Comment


          • #20
            I see. Okay, so I'm performing this analysis on a subgroup of states (identified by dummy CUTOFF3==1 in the code), and in a specific time period, January to December 2021 (with POSTPERIOD_NC==1 for July to December; and POSTPERIOD_NC==0 for January to June). HID is a dummy referring to a policy of interest in states. I guess I do still want to control for state and month fixed effects. Where would I add noestimatecheck in this line?
            Code:
            margins hid, dydx(postperiod_nc) pwcompare(cimargins effects)
            . Many thanks...

            Comment


            • #21
              Code:
              margins hid, dydx(postperiod_nc) pwcompare(cimargins effects) noestimcheck
              N.B: noestimcheck, there is no -ate- in it.

              Comment


              • #22
                This works; thank you so much!

                Comment


                • #23
                  I just wanted to follow up with this post. I have a couple questions: 1) Stata seems to be omitting one interacted combination. Why is that? Does it impact my results? 2) I could use some help interpreting the output of this particular margins command. I post my code below. I’m interested in understanding the output of the third margins command shown in the code. Some background on the variables: the outcome is the probability of reemployment (from unemployment); HID refers to a groups of states with a particular state-level policy in place (high denials; those with lower denial rates are coded 0); CUTOFF3 refers to a group of states that ended a set of federal policies early (those that didn’t are coded 0); POSTPERIOD distinguishes between the months when the federal policies were OFF in the CUTOFF3 states and the several months prior. My output is posted at the end of this post.

                  Code:
                  logit reemp3 i.hid##i.cutoff3##i.postperiod b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 sampjl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate_jhu stringd i.year_month i.statefip if sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
                  margins i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck
                  margins i.hid, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck
                  margins i.hid#i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck
                  This is how I would interpret the following lines. Am I on the right track/totally off?
                  (1 1) vs (0 0): In high denial states, where benefits were cut off early, the increase in the probability of reemployment in the post-period relative to the pre-period was 16 percentage points greater than the increase in the probability of reemployment in the post-period relative to the pre-period in non-high denial states, where benefits were not cut off early. This difference is significant at the 0.05 level.
                  (1 1) vs (0 1): In high denial states, where benefits were cut off early, the increase in the probability of reemployment in the post-period relative to the pre-period was 14 percentage points greater than the increase in the probability of reemployment in the post-period relative to the pre-period in non-high denial states, where benefits were similarly cut off early. This difference is significant at the 0.05 level.

                  My full output:

                  HTML Code:
                    	 		 			. logit reemp3 i.hid##i.cutoff3##i.postperiod b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf 			b1.uh_occmaj_b2 sampjl 			b1.durg ur_sa u 		 		 			> r2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate_jhu stringd i.year_month i.statefip if 			sampall==1 & age>=18 & 			age 		 		 			> nl], vce(cluster statefip) or 		 		 			note: 1.hid#1.cutoff3 omitted because of collinearity. 		 		 			note: 11.uh_occmaj_b2 omitted because of collinearity. 		 		 			note: 739.year_month omitted because of collinearity. 		 		 			note: 55.statefip omitted because of collinearity. 		 		 			note: 56.statefip omitted because of collinearity. 		 		 			Iteration 0: log pseudolikelihood = -12250760 		 		 			Iteration 1: log pseudolikelihood = -11236533 		 		 			Iteration 2: log pseudolikelihood = -11186703 		 		 			Iteration 3: log pseudolikelihood = -11186469 		 		 			Iteration 4: log pseudolikelihood = -11186469 		 		 			Logistic regression Number of obs = 6,684 		 		 			Wald chi2(42) = . 		 		 			Prob > chi2 = . 		 		 			Log pseudolikelihood = -11186469 Pseudo R2 = 0.0869 		 		 			(Std. err. adjusted for 44 clusters in statefip) 		 		 			Robust 		 		 			reemp3 Odds ratio std. err. z P>z [95% conf. interval] 		 		 			1.hid .8448048 .4121336 -0.35 0.730 .3247148 2.197913 		 		 			1.cutoff3 .7265061 .211079 -1.10 0.271 .4110847 1.283947 		 		 			hid#cutoff3 		 		 			1 1 1 (omitted) 		 		 			1.postperiod 1.511941 .6340878 0.99 0.324 .6645881 3.439675 		 		 			hid#postperiod 		 		 			1 1 1.319888 .2351078 1.56 0.119 .930926 1.871368 		 		 			cutoff3#postperiod 		 		 			1 1 1.173244 .2602989 0.72 0.471 .7595192 1.812334 		 		 			hid#cutoff3#postperiod 		 		 			1 1 1 1.677616 .5304469 1.64 0.102 .9027147 3.117703 		 		 			age_group 		 		 			18-24 1.067585 .1879843 0.37 0.710 .7559964 1.507597 		 		 			25-34 .9448556 .142216 -0.38 0.706 .7034705 1.269068 		 		 			45-54 .9373763 .0932369 -0.65 0.516 .7713447 1.139146 		 		 			55-64 .806711 .087214 -1.99 0.047 .6526707 .9971072 		 		 			race_wbho 		 		 			2 black nh .590971 .0838122 -3.71 0.000 .4475563 .7803413 		 		 			3 hispanic/latino .9595384 .0805638 -0.49 0.623 .8139441 1.131176 		 		 			other nh .8154017 .1073911 -1.55 0.121 .6298912 1.055547 		 		 			edu4 		 		 			1 Less than HS .9334952 .188299 -0.34 0.733 .6286557 1.386153 		 		 			2 HS or GED .7978529 .0906706 -1.99 0.047 .6385422 .9969104 		 		 			3 Some college or Associate's' .8422417 .0899708 -1.61 0.108 .6831386 1.0384 		 		 			1.woman .9602018 .0952203 -0.41 0.682 .7905902 1.166202 		 		 			1.marstdum1 1.080298 .1285047 0.65 0.516 .855639 1.363944 		 		 			woman#marstdum1 		 		 			1 1 .808204 .1726155 -1.00 0.319 .5317679 1.228344 		 		 			ownkidd_18 		 		 			1: Own children, 		 		 			woman#ownkidd_18 		 		 			1#1: Own children, 		 		 			marstdum1#ownkidd_18 		 		 			1#1: Own children, 		 		 			woman#marstdum1#ownkidd_18 		 		 			1#1#1: Own children, 		 		 			ind_nilf 		 		 			2 1.895673 .7905257 1.53 0.125 .8371418 4.292675 		 		 			3 1.046396 .4457803 0.11 0.915 .4540166 2.411685 		 		 			4 1.190101 .4815363 0.43 0.667 .5384837 2.63024 		 		 			5 1.160612 .4403797 0.39 0.695 .5517083 2.441546 		 		 			6 1.010318 .372636 0.03 0.978 .490353 2.081647 		 		 			7 1.007307 .3724497 0.02 0.984 .4880139 2.079179 		 		 			8 1.737972 .6228211 1.54 0.123 .8610048 3.508166 		 		 			9 1.380655 .5524645 0.81 0.420 .6302023 3.024758 		 		 			10 1.63282 .6146132 1.30 0.193 .7807924 3.414608 		 		 			11 1.296402 .486074 0.69 0.489 .621712 2.703273 		 		 			12 1.569633 .7231219 0.98 0.328 .6362886 3.872062 		 		 			13 1.091652 .5453244 0.18 0.861 .4100854 2.905988 		 		 			14 1.730688 1.136671 0.84 0.404 .477718 6.269975 		 		 			uh_occmaj_b2 		 		 			professional and related occupations 1.211429 .1589085 1.46 0.144 .9367891 1.566584 		 		 			service occupations 1.099327 .1602891 0.65 0.516 .8260685 1.462977 		 		 			sales and related occupations 1.312746 .222853 1.60 0.109 .9411959 1.830971 		 		 			office and administrative support occupations 1.04943 .1559791 0.32 0.745 .7842194 1.404331 		 		 			farming, fishing, and forestry occupations .953463 .5997131 -0.08 0.940 .2779148 3.271117 		 		 			construction and extraction occupations 1.693002 .2782661 3.20 0.001 1.226738 2.336485 		 		 			installation, maintenance, and repair occupations 1.411013 .2927323 1.66 0.097 .9395905 2.118963 		 		 			production occupations 1.213486 .1552048 1.51 0.130 .9444219 1.559206 		 		 			transportation and material moving occupations 1.195174 .1798934 1.18 0.236 .889839 1.605281 		 		 			armed forces 1 (omitted) 		 		 			sampjl 1.392052 .0905271 5.09 0.000 1.225464 1.581286 		 		 			durg 		 		 			5-8 weeks .6541102 .0665139 -4.17 0.000 .5359146 .7983739 		 		 			9-12 weeks .5754466 .0534491 -5.95 0.000 .4796706 .6903463 		 		 			13-16 weeks .3707656 .0485167 -7.58 0.000 .2868898 .4791635 		 		 			17-20 weeks .4360954 .0899508 -4.02 0.000 .2910779 .6533617 		 		 			21-26 weeks .4251378 .0552676 -6.58 0.000 .3295143 .5485109 		 		 			27-32 weeks .241331 .0542037 -6.33 0.000 .1553926 .3747967 		 		 			33-38 weeks .3811776 .0873856 -4.21 0.000 .2432137 .597402 		 		 			39-44 weeks .3070426 .0470368 -7.71 0.000 .2274053 .4145689 		 		 			45-50 weeks .1823773 .0407861 -7.61 0.000 .1176553 .2827028 		 		 			51-52 weeks .3386499 .0439951 -8.33 0.000 .2625238 .4368509 		 		 			>52 weeks .1587225 .0295763 -9.88 0.000 .1101605 .228692 		 		 			ur_sa 1.9e+165 2.8e+167 2.65 0.008 1.15e+43 3.2e+287 		 		 			ur2_sa 0 0 -2.57 0.010 0 0 		 		 			ur3_sa . . 2.44 0.015 . . 		 		 			iur 9.44e+18 4.74e+20 0.87 0.384 1.71e-24 5.20e+61 		 		 			iur2 4.5e-276 6.5e-273 -0.44 0.659 0 . 		 		 			iur3 . . 0.29 0.772 0 . 		 		 			initrate 2.68e-22 3.26e-20 -0.41 0.683 1.0e-125 6.95e+81 		 		 			initrate2 3.8e+281 4.2e+285 0.06 0.953 0 . 		 		 			initrate3 0 0 -0.05 0.957 0 . 		 		 			empgrowth 1.303027 .2702055 1.28 0.202 .867844 1.956433 		 		 			emp2 .9611669 .3232344 -0.12 0.906 .497216 1.858029 		 		 			emp3 1.012619 .1594366 0.08 0.937 .7437456 1.378693 		 		 			l_incrate_jhu 1.340004 .1092554 3.59 0.000 1.142101 1.5722 		 		 			stringd .9964543 .0074464 -0.48 0.635 .981966 1.011156 		 		 			year_month 		 		 			733 1.321321 .2976673 1.24 0.216 .8496688 2.054788 		 		 			734 1.900181 .5187354 2.35 0.019 1.112816 3.244642 		 		 			735 1.609576 .4028189 1.90 0.057 .9855675 2.628673 		 		 			736 1.976637 .5544794 2.43 0.015 1.140645 3.425335 		 		 			737 2.387076 1.06694 1.95 0.052 .9940514 5.732232 		 		 			738 1.110973 .1614723 0.72 0.469 .835578 1.477133 		 		 			739 1 (omitted) 		 		 			statefip 		 		 			arkansas .4891734 .222422 -1.57 0.116 .200646 1.192601 		 		 			california .5537214 .7141911 -0.46 0.647 .0441987 6.93702 		 		 			colorado .3490437 .3480586 -1.06 0.291 .0494402 2.464218 		 		 			connecticut .2703205 .3059339 -1.16 0.248 .0294128 2.484404 		 		 			delaware .6256973 .5103097 -0.57 0.565 .1265134 3.094511 		 		 			district of columbia .3567543 .4012229 -0.92 0.359 .0393611 3.233487 		 		 			georgia 1.01599 .4386541 0.04 0.971 .4358961 2.368078 		 		 			hawaii .6497519 .3648265 -0.77 0.443 .2161772 1.952923 		 		 			idaho .6562326 .2036771 -1.36 0.175 .3571639 1.205724 		 		 			illinois .3976497 .4241809 -0.86 0.387 .0491481 3.217321 		 		 			iowa .6669601 .2764237 -0.98 0.328 .296017 1.502737 		 		 			kansas 1.312426 .3608184 0.99 0.323 .7656994 2.249527 		 		 			kentucky .5488892 .3637707 -0.91 0.365 .1497475 2.011916 		 		 			maine .5152634 .3451628 -0.99 0.322 .1386211 1.915266 		 		 			maryland .8237219 .740503 -0.22 0.829 .1414406 4.797192 		 		 			michigan .5287848 .2950051 -1.14 0.253 .177174 1.578185 		 		 			minnesota .4547937 .2129583 -1.68 0.092 .1816507 1.138654 		 		 			mississippi .5688462 .1795424 -1.79 0.074 .3064319 1.05598 		 		 			missouri .7666102 .118664 -1.72 0.086 .5660003 1.038323 		 		 			montana 1.846095 .5898796 1.92 0.055 .9868951 3.453322 		 		 			nebraska 2.996182 2.303692 1.43 0.154 .6638956 13.52186 		 		 			nevada .4294347 .5259476 -0.69 0.490 .0389398 4.735884 		 		 			new hampshire .5354148 .171342 -1.95 0.051 .2859506 1.002512 		 		 			new jersey .3215604 .3689603 -0.99 0.323 .0339304 3.047447 		 		 			new mexico .3537273 .2569232 -1.43 0.152 .085195 1.468665 		 		 			new york .4069928 .5157846 -0.71 0.478 .0339511 4.878876 		 		 			north carolina .4573715 .1901148 -1.88 0.060 .2025124 1.032967 		 		 			north dakota 1.361402 .2952237 1.42 0.155 .8900222 2.082436 		 		 			oklahoma .7737274 .1862468 -1.07 0.287 .4827165 1.240178 		 		 			oregon .4425235 .3946628 -0.91 0.361 .0770541 2.541423 		 		 			pennsylvania .4519955 .4818388 -0.74 0.456 .0559412 3.652051 		 		 			rhode island .5596404 .5997285 -0.54 0.588 .0685069 4.571764 		 		 			south carolina .6372154 .1363411 -2.11 0.035 .4189477 .9691983 		 		 			south dakota 3.508452 .8599246 5.12 0.000 2.170128 5.672125 		 		 			tennessee .870771 .0831107 -1.45 0.147 .722206 1.049897 		 		 			texas .62395 .4895824 -0.60 0.548 .1340462 2.904324 		 		 			utah 1.492642 .9082895 0.66 0.510 .4528871 4.919505 		 		 			vermont .8013101 .4048566 -0.44 0.661 .2976711 2.157071 		 		 			virginia .737892 .369215 -0.61 0.544 .2767462 1.967451 		 		 			washington .3689785 .184406 -1.99 0.046 .1385455 .9826747 		 		 			west virginia .5477684 .3421977 -0.96 0.335 .1610055 1.863602 		 		 			wisconsin 1 (omitted) 		 		 			wyoming 1 (omitted) 		 		 			_cons .000032 .0000916 -3.62 0.000 1.17e-07 .0087452 		 		 			Note: _cons estimates baseline odds. 		 		 			. margins i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck 		 		 			Pairwise comparisons of average marginal effects 		 		 			Model VCE: Robust Number of obs = 6,684 		 		 			Expression: Pr(reemp3), predict() 		 		 			dy/dx wrt: 1.postperiod 		 		 			  		 		 			Delta-method Unadjusted 		 		 			Margin std. err. [95% conf. interval] 		 		 			0.postperiod (base outcome) 		 		 			1.postperiod 		 		 			cutoff3 		 		 			0 .0840868 .0746463 -.0622172 .2303909 		 		 			1 .1269144 .0615985 .0061836 .2476452 		 		 			Note: dy/dx for factor levels is the discrete change from the 		 		 			base level. 		 		 			  		 		 			Contrast Delta-method Unadjusted Unadjusted 		 		 			dy/dx std. err. z P>z [95% conf. interval] 		 		 			0.postperiod (base outcome) 		 		 			1.postperiod 		 		 			cutoff3 		 		 			1 vs 0 .0428275 .0448533 0.95 0.340 -.0450834 .1307384 		 		 			Note: dy/dx for factor levels is the discrete change from the base level. 		 		 			. margins i.hid, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck 		 		 			Pairwise comparisons of average marginal effects 		 		 			Model VCE: Robust Number of obs = 6,684 		 		 			Expression: Pr(reemp3), predict() 		 		 			dy/dx wrt: 1.postperiod 		 		 			  		 		 			Delta-method Unadjusted 		 		 			Margin std. err. [95% conf. interval] 		 		 			0.postperiod (base outcome) 		 		 			1.postperiod 		 		 			hid 		 		 			0 .0782285 .0719283 -.0627484 .2192055 		 		 			1 .1522654 .0583787 .0378452 .2666857 		 		 			Note: dy/dx for factor levels is the discrete change from the 		 		 			base level. 		 		 			  		 		 			Contrast Delta-method Unadjusted Unadjusted 		 		 			dy/dx std. err. z P>z [95% conf. interval] 		 		 			0.postperiod (base outcome) 		 		 			1.postperiod 		 		 			hid 		 		 			1 vs 0 .0740369 .0331757 2.23 0.026 .0090138 .1390601 		 		 			Note: dy/dx for factor levels is the discrete change from the base level. 		 		 			. margins i.hid#i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck 		 		 			Pairwise comparisons of average marginal effects 		 		 			Model VCE: Robust Number of obs = 6,684 		 		 			Expression: Pr(reemp3), predict() 		 		 			dy/dx wrt: 1.postperiod 		 		 			  		 		 			Delta-method Unadjusted 		 		 			Margin std. err. [95% conf. interval] 		 		 			0.postperiod (base outcome) 		 		 			1.postperiod 		 		 			hid#cutoff3 		 		 			0 0 .0719679 .0780209 -.0809503 .2248861 		 		 			0 1 .0903833 .0638242 -.0347098 .2154764 		 		 			1 0 .1186925 .0649391 -.0085858 .2459708 		 		 			1 1 .2344565 .0686209 .099962 .3689511 		 		 			Note: dy/dx for factor levels is the discrete change from the 		 		 			base level. 		 		 			  		 		 			Contrast Delta-method Unadjusted Unadjusted 		 		 			dy/dx std. err. z P>z [95% conf. interval] 		 		 			0.postperiod (base outcome) 		 		 			1.postperiod 		 		 			hid#cutoff3 		 		 			(0 1) vs (0 0) .0184154 .0466793 0.39 0.693 -.0730743 .109905 		 		 			(1 0) vs (0 0) .0467246 .0372942 1.25 0.210 -.0263707 .1198199 		 		 			(1 1) vs (0 0) .1624886 .0799795 2.03 0.042 .0057318 .3192455 		 		 			(1 0) vs (0 1) .0283093 .0412022 0.69 0.492 -.0524456 .1090641 		 		 			(1 1) vs (0 1) .1440733 .0575853 2.50 0.012 .0312083 .2569383 		 		 			(1 1) vs (1 0) .115764 .0688498 1.68 0.093 -.0191791 .2507072 		 		 			Note: dy/dx for factor levels is the discrete change from the base level.
                  Last edited by Claire McKenna; 02 Dec 2022, 11:05.

                  Comment


                  • #24
                    The output part of the post got messed up somehow, and it is all in one long line and pretty close to impossible to work with. Can you please edit or repost? Thanks.

                    Comment


                    • #25
                      Sorry about that; here's a repost (I can't edit the original post for some reason). Please let me know if this isn't legible either:
                      //
                      I just wanted to follow up with this post. I have a couple questions: 1) Stata seems to be omitting one interacted combination. Why is that? Does it impact my results? 2) I could use some help interpreting the output of this particular margins command. I post my code below. I’m interested in understanding the output of the third margins command shown in the code. Some background on the variables: the outcome is the probability of reemployment (from unemployment); HID refers to a groups of states with a particular state-level policy in place (high denials; those with lower denial rates are coded 0); CUTOFF3 refers to a group of states that ended a set of federal policies early (those that didn’t are coded 0); POSTPERIOD distinguishes between the months when the federal policies were OFF in the CUTOFF3 states and the several months prior. My output is posted at the end of this post.

                      Code:
                      logit reemp3 i.hid##i.cutoff3##i.postperiod b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 sampjl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate_jhu stringd i.year_month i.statefip if sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
                      margins i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck
                      margins i.hid, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck
                      margins i.hid#i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck
                      This is how I would interpret the following lines. Am I on the right track/totally off?
                      (1 1) vs (0 0): In high denial states, where benefits were cut off early, the increase in the probability of reemployment in the post-period relative to the pre-period was 16 percentage points greater than the increase in the probability of reemployment in the post-period relative to the pre-period in non-high denial states, where benefits were not cut off early. This difference is significant at the 0.05 level.
                      (1 1) vs (0 1): In high denial states, where benefits were cut off early, the increase in the probability of reemployment in the post-period relative to the pre-period was 14 percentage points greater than the increase in the probability of reemployment in the post-period relative to the pre-period in non-high denial states, where benefits were similarly cut off early. This difference is significant at the 0.05 level.

                      My full output:

                      . logit reemp3 i.hid##i.cutoff3##i.postperiod b3.age_group b1.race_wbho b4.edu4 i.woman##i.ma
                      > rstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 sampjl b1.durg ur_sa ur2_sa ur3_sa iur iu
                      > r2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate_jhu stringd i.year_month
                      > i.statefip if sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or

                      note: 1.hid#1.cutoff3 omitted because of collinearity.
                      note: 11.uh_occmaj_b2 omitted because of collinearity.
                      note: 739.year_month omitted because of collinearity.
                      note: 55.statefip omitted because of collinearity.
                      note: 56.statefip omitted because of collinearity.
                      Iteration 0: log pseudolikelihood = -12250760
                      Iteration 1: log pseudolikelihood = -11236533
                      Iteration 2: log pseudolikelihood = -11186703
                      Iteration 3: log pseudolikelihood = -11186469
                      Iteration 4: log pseudolikelihood = -11186469

                      Logistic regression Number of obs = 6,684
                      Wald chi2(42) = .
                      Prob > chi2 = .
                      Log pseudolikelihood = -11186469 Pseudo R2 = 0.0869

                      (Std. err. adjusted for 44 clusters in statefip)
                      --------------------------------------------------------------------------------------------------------------------
                      | Robust
                      reemp3 | Odds ratio std. err. z P>|z| [95% conf. interval]
                      ---------------------------------------------------+----------------------------------------------------------------
                      1.hid | .8448048 .4121336 -0.35 0.730 .3247148 2.197913
                      1.cutoff3 | .7265061 .211079 -1.10 0.271 .4110847 1.283947
                      |
                      hid#cutoff3 |
                      1 1 | 1 (omitted)
                      |
                      1.postperiod | 1.511941 .6340878 0.99 0.324 .6645881 3.439675
                      |
                      hid#postperiod |
                      1 1 | 1.319888 .2351078 1.56 0.119 .930926 1.871368
                      |
                      cutoff3#postperiod |
                      1 1 | 1.173244 .2602989 0.72 0.471 .7595192 1.812334
                      |
                      hid#cutoff3#postperiod |
                      1 1 1 | 1.677616 .5304469 1.64 0.102 .9027147 3.117703
                      |
                      age_group |
                      18-24 | 1.067585 .1879843 0.37 0.710 .7559964 1.507597
                      25-34 | .9448556 .142216 -0.38 0.706 .7034705 1.269068
                      45-54 | .9373763 .0932369 -0.65 0.516 .7713447 1.139146
                      55-64 | .806711 .087214 -1.99 0.047 .6526707 .9971072
                      |
                      race_wbho |
                      2 black nh | .590971 .0838122 -3.71 0.000 .4475563 .7803413
                      3 hispanic/latino | .9595384 .0805638 -0.49 0.623 .8139441 1.131176
                      other nh | .8154017 .1073911 -1.55 0.121 .6298912 1.055547
                      |
                      edu4 |
                      1 Less than HS | .9334952 .188299 -0.34 0.733 .6286557 1.386153
                      2 HS or GED | .7978529 .0906706 -1.99 0.047 .6385422 .9969104
                      3 Some college or Associate's' | .8422417 .0899708 -1.61 0.108 .6831386 1.0384
                      |
                      1.woman | .9602018 .0952203 -0.41 0.682 .7905902 1.166202
                      1.marstdum1 | 1.080298 .1285047 0.65 0.516 .855639 1.363944
                      |
                      woman#marstdum1 |
                      1 1 | .808204 .1726155 -1.00 0.319 .5317679 1.228344
                      |
                      ownkidd_18 |
                      1: Own children, <18, in HH | .874251 .1896057 -0.62 0.535 .5715173 1.337343
                      |
                      woman#ownkidd_18 |
                      1#1: Own children, <18, in HH | 1.048349 .2681951 0.18 0.854 .6349603 1.730874
                      |
                      marstdum1#ownkidd_18 |
                      1#1: Own children, <18, in HH | 1.397039 .2992478 1.56 0.119 .9180782 2.125872
                      |
                      woman#marstdum1#ownkidd_18 |
                      1#1#1: Own children, <18, in HH | .8722012 .3426738 -0.35 0.728 .403825 1.883823
                      |
                      ind_nilf |
                      2 | 1.895673 .7905257 1.53 0.125 .8371418 4.292675
                      3 | 1.046396 .4457803 0.11 0.915 .4540166 2.411685
                      4 | 1.190101 .4815363 0.43 0.667 .5384837 2.63024
                      5 | 1.160612 .4403797 0.39 0.695 .5517083 2.441546
                      6 | 1.010318 .372636 0.03 0.978 .490353 2.081647
                      7 | 1.007307 .3724497 0.02 0.984 .4880139 2.079179
                      8 | 1.737972 .6228211 1.54 0.123 .8610048 3.508166
                      9 | 1.380655 .5524645 0.81 0.420 .6302023 3.024758
                      10 | 1.63282 .6146132 1.30 0.193 .7807924 3.414608
                      11 | 1.296402 .486074 0.69 0.489 .621712 2.703273
                      12 | 1.569633 .7231219 0.98 0.328 .6362886 3.872062
                      13 | 1.091652 .5453244 0.18 0.861 .4100854 2.905988
                      14 | 1.730688 1.136671 0.84 0.404 .477718 6.269975
                      |
                      uh_occmaj_b2 |
                      professional and related occupations | 1.211429 .1589085 1.46 0.144 .9367891 1.566584
                      service occupations | 1.099327 .1602891 0.65 0.516 .8260685 1.462977
                      sales and related occupations | 1.312746 .222853 1.60 0.109 .9411959 1.830971
                      office and administrative support occupations | 1.04943 .1559791 0.32 0.745 .7842194 1.404331
                      farming, fishing, and forestry occupations | .953463 .5997131 -0.08 0.940 .2779148 3.271117
                      construction and extraction occupations | 1.693002 .2782661 3.20 0.001 1.226738 2.336485
                      installation, maintenance, and repair occupations | 1.411013 .2927323 1.66 0.097 .9395905 2.118963
                      production occupations | 1.213486 .1552048 1.51 0.130 .9444219 1.559206
                      transportation and material moving occupations | 1.195174 .1798934 1.18 0.236 .889839 1.605281
                      armed forces | 1 (omitted)
                      |
                      sampjl | 1.392052 .0905271 5.09 0.000 1.225464 1.581286
                      |
                      durg |
                      5-8 weeks | .6541102 .0665139 -4.17 0.000 .5359146 .7983739
                      9-12 weeks | .5754466 .0534491 -5.95 0.000 .4796706 .6903463
                      13-16 weeks | .3707656 .0485167 -7.58 0.000 .2868898 .4791635
                      17-20 weeks | .4360954 .0899508 -4.02 0.000 .2910779 .6533617
                      21-26 weeks | .4251378 .0552676 -6.58 0.000 .3295143 .5485109
                      27-32 weeks | .241331 .0542037 -6.33 0.000 .1553926 .3747967
                      33-38 weeks | .3811776 .0873856 -4.21 0.000 .2432137 .597402
                      39-44 weeks | .3070426 .0470368 -7.71 0.000 .2274053 .4145689
                      45-50 weeks | .1823773 .0407861 -7.61 0.000 .1176553 .2827028
                      51-52 weeks | .3386499 .0439951 -8.33 0.000 .2625238 .4368509
                      >52 weeks | .1587225 .0295763 -9.88 0.000 .1101605 .228692
                      |
                      ur_sa | 1.9e+165 2.8e+167 2.65 0.008 1.15e+43 3.2e+287
                      ur2_sa | 0 0 -2.57 0.010 0 0
                      ur3_sa | . . 2.44 0.015 . .
                      iur | 9.44e+18 4.74e+20 0.87 0.384 1.71e-24 5.20e+61
                      iur2 | 4.5e-276 6.5e-273 -0.44 0.659 0 .
                      iur3 | . . 0.29 0.772 0 .
                      initrate | 2.68e-22 3.26e-20 -0.41 0.683 1.0e-125 6.95e+81
                      initrate2 | 3.8e+281 4.2e+285 0.06 0.953 0 .
                      initrate3 | 0 0 -0.05 0.957 0 .
                      empgrowth | 1.303027 .2702055 1.28 0.202 .867844 1.956433
                      emp2 | .9611669 .3232344 -0.12 0.906 .497216 1.858029
                      emp3 | 1.012619 .1594366 0.08 0.937 .7437456 1.378693
                      l_incrate_jhu | 1.340004 .1092554 3.59 0.000 1.142101 1.5722
                      stringd | .9964543 .0074464 -0.48 0.635 .981966 1.011156
                      |
                      year_month |
                      733 | 1.321321 .2976673 1.24 0.216 .8496688 2.054788
                      734 | 1.900181 .5187354 2.35 0.019 1.112816 3.244642
                      735 | 1.609576 .4028189 1.90 0.057 .9855675 2.628673
                      736 | 1.976637 .5544794 2.43 0.015 1.140645 3.425335
                      737 | 2.387076 1.06694 1.95 0.052 .9940514 5.732232
                      738 | 1.110973 .1614723 0.72 0.469 .835578 1.477133
                      739 | 1 (omitted)
                      |
                      statefip |
                      arkansas | .4891734 .222422 -1.57 0.116 .200646 1.192601
                      california | .5537214 .7141911 -0.46 0.647 .0441987 6.93702
                      colorado | .3490437 .3480586 -1.06 0.291 .0494402 2.464218
                      connecticut | .2703205 .3059339 -1.16 0.248 .0294128 2.484404
                      delaware | .6256973 .5103097 -0.57 0.565 .1265134 3.094511
                      district of columbia | .3567543 .4012229 -0.92 0.359 .0393611 3.233487
                      georgia | 1.01599 .4386541 0.04 0.971 .4358961 2.368078
                      hawaii | .6497519 .3648265 -0.77 0.443 .2161772 1.952923
                      idaho | .6562326 .2036771 -1.36 0.175 .3571639 1.205724
                      illinois | .3976497 .4241809 -0.86 0.387 .0491481 3.217321
                      iowa | .6669601 .2764237 -0.98 0.328 .296017 1.502737
                      kansas | 1.312426 .3608184 0.99 0.323 .7656994 2.249527
                      kentucky | .5488892 .3637707 -0.91 0.365 .1497475 2.011916
                      maine | .5152634 .3451628 -0.99 0.322 .1386211 1.915266
                      maryland | .8237219 .740503 -0.22 0.829 .1414406 4.797192
                      michigan | .5287848 .2950051 -1.14 0.253 .177174 1.578185
                      minnesota | .4547937 .2129583 -1.68 0.092 .1816507 1.138654
                      mississippi | .5688462 .1795424 -1.79 0.074 .3064319 1.05598
                      missouri | .7666102 .118664 -1.72 0.086 .5660003 1.038323
                      montana | 1.846095 .5898796 1.92 0.055 .9868951 3.453322
                      nebraska | 2.996182 2.303692 1.43 0.154 .6638956 13.52186
                      nevada | .4294347 .5259476 -0.69 0.490 .0389398 4.735884
                      new hampshire | .5354148 .171342 -1.95 0.051 .2859506 1.002512
                      new jersey | .3215604 .3689603 -0.99 0.323 .0339304 3.047447
                      new mexico | .3537273 .2569232 -1.43 0.152 .085195 1.468665
                      new york | .4069928 .5157846 -0.71 0.478 .0339511 4.878876
                      north carolina | .4573715 .1901148 -1.88 0.060 .2025124 1.032967
                      north dakota | 1.361402 .2952237 1.42 0.155 .8900222 2.082436
                      oklahoma | .7737274 .1862468 -1.07 0.287 .4827165 1.240178
                      oregon | .4425235 .3946628 -0.91 0.361 .0770541 2.541423
                      pennsylvania | .4519955 .4818388 -0.74 0.456 .0559412 3.652051
                      rhode island | .5596404 .5997285 -0.54 0.588 .0685069 4.571764
                      south carolina | .6372154 .1363411 -2.11 0.035 .4189477 .9691983
                      south dakota | 3.508452 .8599246 5.12 0.000 2.170128 5.672125
                      tennessee | .870771 .0831107 -1.45 0.147 .722206 1.049897
                      texas | .62395 .4895824 -0.60 0.548 .1340462 2.904324
                      utah | 1.492642 .9082895 0.66 0.510 .4528871 4.919505
                      vermont | .8013101 .4048566 -0.44 0.661 .2976711 2.157071
                      virginia | .737892 .369215 -0.61 0.544 .2767462 1.967451
                      washington | .3689785 .184406 -1.99 0.046 .1385455 .9826747
                      west virginia | .5477684 .3421977 -0.96 0.335 .1610055 1.863602
                      wisconsin | 1 (omitted)
                      wyoming | 1 (omitted)
                      |
                      _cons | .000032 .0000916 -3.62 0.000 1.17e-07 .0087452
                      --------------------------------------------------------------------------------------------------------------------
                      Note: _cons estimates baseline odds.

                      . margins i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck

                      Pairwise comparisons of average marginal effects

                      Model VCE: Robust Number of obs = 6,684

                      Expression: Pr(reemp3), predict()
                      dy/dx wrt: 1.postperiod

                      ---------------------------------------------------------------
                      | Delta-method Unadjusted
                      | Margin std. err. [95% conf. interval]
                      --------------+------------------------------------------------
                      0.postperiod | (base outcome)
                      --------------+------------------------------------------------
                      1.postperiod |
                      cutoff3 |
                      0 | .0840868 .0746463 -.0622172 .2303909
                      1 | .1269144 .0615985 .0061836 .2476452
                      ---------------------------------------------------------------
                      Note: dy/dx for factor levels is the discrete change from the
                      base level.

                      -------------------------------------------------------------------------------
                      | Contrast Delta-method Unadjusted Unadjusted
                      | dy/dx std. err. z P>|z| [95% conf. interval]
                      --------------+----------------------------------------------------------------
                      0.postperiod | (base outcome)
                      --------------+----------------------------------------------------------------
                      1.postperiod |
                      cutoff3 |
                      1 vs 0 | .0428275 .0448533 0.95 0.340 -.0450834 .1307384
                      -------------------------------------------------------------------------------
                      Note: dy/dx for factor levels is the discrete change from the base level.

                      . margins i.hid, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck

                      Pairwise comparisons of average marginal effects

                      Model VCE: Robust Number of obs = 6,684

                      Expression: Pr(reemp3), predict()
                      dy/dx wrt: 1.postperiod

                      ---------------------------------------------------------------
                      | Delta-method Unadjusted
                      | Margin std. err. [95% conf. interval]
                      --------------+------------------------------------------------
                      0.postperiod | (base outcome)
                      --------------+------------------------------------------------
                      1.postperiod |
                      hid |
                      0 | .0782285 .0719283 -.0627484 .2192055
                      1 | .1522654 .0583787 .0378452 .2666857
                      ---------------------------------------------------------------
                      Note: dy/dx for factor levels is the discrete change from the
                      base level.

                      -------------------------------------------------------------------------------
                      | Contrast Delta-method Unadjusted Unadjusted
                      | dy/dx std. err. z P>|z| [95% conf. interval]
                      --------------+----------------------------------------------------------------
                      0.postperiod | (base outcome)
                      --------------+----------------------------------------------------------------
                      1.postperiod |
                      hid |
                      1 vs 0 | .0740369 .0331757 2.23 0.026 .0090138 .1390601
                      -------------------------------------------------------------------------------
                      Note: dy/dx for factor levels is the discrete change from the base level.

                      . margins i.hid#i.cutoff3, dydx(i.postperiod) pwcompare(cimargins effects) noestimcheck

                      Pairwise comparisons of average marginal effects

                      Model VCE: Robust Number of obs = 6,684

                      Expression: Pr(reemp3), predict()
                      dy/dx wrt: 1.postperiod

                      ---------------------------------------------------------------
                      | Delta-method Unadjusted
                      | Margin std. err. [95% conf. interval]
                      --------------+------------------------------------------------
                      0.postperiod | (base outcome)
                      --------------+------------------------------------------------
                      1.postperiod |
                      hid#cutoff3 |
                      0 0 | .0719679 .0780209 -.0809503 .2248861
                      0 1 | .0903833 .0638242 -.0347098 .2154764
                      1 0 | .1186925 .0649391 -.0085858 .2459708
                      1 1 | .2344565 .0686209 .099962 .3689511
                      ---------------------------------------------------------------
                      Note: dy/dx for factor levels is the discrete change from the
                      base level.

                      ---------------------------------------------------------------------------------
                      | Contrast Delta-method Unadjusted Unadjusted
                      | dy/dx std. err. z P>|z| [95% conf. interval]
                      ----------------+----------------------------------------------------------------
                      0.postperiod | (base outcome)
                      ----------------+----------------------------------------------------------------
                      1.postperiod |
                      hid#cutoff3 |
                      (0 1) vs (0 0) | .0184154 .0466793 0.39 0.693 -.0730743 .109905
                      (1 0) vs (0 0) | .0467246 .0372942 1.25 0.210 -.0263707 .1198199
                      (1 1) vs (0 0) | .1624886 .0799795 2.03 0.042 .0057318 .3192455
                      (1 0) vs (0 1) | .0283093 .0412022 0.69 0.492 -.0524456 .1090641
                      (1 1) vs (0 1) | .1440733 .0575853 2.50 0.012 .0312083 .2569383
                      (1 1) vs (1 0) | .115764 .0688498 1.68 0.093 -.0191791 .2507072
                      ---------------------------------------------------------------------------------
                      Note: dy/dx for factor levels is the discrete change from the base level.

                      Comment


                      • #26
                        This is how I would interpret the following lines. Am I on the right track/totally off?
                        (1 1) vs (0 0): In high denial states, where benefits were cut off early, the increase in the probability of reemployment in the post-period relative to the pre-period was 16 percentage points greater than the increase in the probability of reemployment in the post-period relative to the pre-period in non-high denial states, where benefits were not cut off early. This difference is significant at the 0.05 level.
                        (1 1) vs (0 1): In high denial states, where benefits were cut off early, the increase in the probability of reemployment in the post-period relative to the pre-period was 14 percentage points greater than the increase in the probability of reemployment in the post-period relative to the pre-period in non-high denial states, where benefits were similarly cut off early. This difference is significant at the 0.05 level.
                        Right on track! At least, within the framework of statistical significance testing.

                        In my view, which does not use the framework of statistical significance testing, one should not overlook the (1 1) vs (0 1) comparison. While it is not "statistically significant," the effect estimate is only slightly smaller than the other two, and all three confidence intervals overlap almost completely. It is true that the data are compatible with no difference, or even a tiny negative difference, for the (1 1) vs (0 1) comparison, it is also true that the data are compatible with very, very small (1% percentage point or even a fraction of a percentage point) differences in probabilty of re-employment. Labor market analysis is not my field, but to me a difference that small does not seem large enough to be worth talking about, even if it is, strictly speaking, positive. So I would not consider the (1 1) vs (0 1) contrast as being qualitatively a different beast from the other two contrasts, and I would present them in a more or less equivalent manner.
                        Last edited by Clyde Schechter; 02 Dec 2022, 13:33.

                        Comment


                        • #27
                          That's great; thanks so much. Any thoughts on the dropped interaction? HID#CUTOFF3

                          Comment


                          • #28
                            Any thoughts on the dropped interaction? HID#CUTOFF3
                            Ouch! I got distracted by the other question and forgot about this.

                            This worries me. In particular, reading this more carefully, I see that you actually have two treatments, crossed with each other, and you have a prepost variable. But how is that prepost variable defined? Do the two treatments always begin simultaneously? If so, then there is no problem defining prepost. But if not, then it seems that a single prepost variable is not a proper specification of what's going on.

                            Although the above does not seem directly related to your question, my mind was drawn to it because one possible reason for an HID#CUTOFF3 interaction term to drop is if its value is automatically determined by the value of the prepost variable. For example, this would happen if prepost is specified as always 0 if one or both treatments is 0. You can easily check this by running -by prepost, sort: tab HID CUTOFF3-. If you have any 0 cells in either table, that's would be the cause of the dropped term, and I think it could indicate a mis-specified model.

                            Comment


                            • #29
                              Okay I see. Yeah, I'm trying to understand how reemployment changed pre-/post-cutoff in states that are strict on a particular measure relative to states that aren't strict on a particular measure (HID).

                              I just ran your suggested command and this is what came out [EDITED FROM ORIGINAL POST -- I'M ALL TURNED AROUND]:

                              HTML Code:
                              .. by postperiod, sort: tab hid cutoff3
                              
                                  
                              -> postperiod = 0
                              
                              High NS 
                              denials 
                              states, as 
                              of 1/2020 
                              (1==high; 
                              0==low or         cutoff3
                              medium)          0          1      Total
                              
                              0    186,560     91,271    277,831 
                              1     63,792     90,134    153,926 
                              
                              Total    250,352    181,405    431,757 
                              
                                  
                              -> postperiod = 1
                              
                              High NS 
                              denials 
                              states, as 
                              of 1/2020 
                              (1==high; 
                              0==low or         cutoff3
                              medium)          0          1      Total
                              
                              0     60,092     29,980     90,072 
                              1     21,134     29,155     50,289 
                              
                              Total     81,226     59,135    140,361 
                              
                                  
                              -> postperiod = .
                              
                              High NS 
                              denials 
                              states, as 
                              of 1/2020 
                              (1==high; 
                              0==low or         cutoff3
                              medium)          0          1      Total
                              
                              0  1,072,417    520,647  1,593,064 
                              1    361,871    506,384    868,255 
                              
                              Total  1,434,288  1,027,031  2,461,319 
                              
                              Last edited by Claire McKenna; 02 Dec 2022, 14:02.

                              Comment


                              • #30
                                This actually captures my sample limitations (apologies)

                                HTML Code:
                                . by postperiod, sort: tab hid cutoff3    if sampall==1    &    age>=18    &    age<65
                                
                                                        
                                -> postperiod = 0
                                
                                High NS 
                                denials 
                                states, as 
                                of 1/2020 
                                (1==high; 
                                0==low or         cutoff3
                                medium)          0          1    Total
                                    
                                0      2,783        949    3,732 
                                1        791        937    1,728 
                                    
                                Total      3,574      1,886    5,460 
                                
                                                        
                                -> postperiod = 1
                                
                                High NS 
                                denials 
                                states, as 
                                of 1/2020 
                                (1==high; 
                                0==low or         cutoff3
                                medium)          0          1    Total
                                    
                                0        794        246    1,040 
                                1        270        230    500 
                                    
                                Total      1,064        476    1,540 
                                
                                                        
                                -> postperiod = .
                                
                                High NS 
                                denials 
                                states, as 
                                of 1/2020 
                                (1==high; 
                                0==low or         cutoff3
                                medium)          0          1    Total
                                    
                                0     12,454      4,823    17,277 
                                1      3,947      4,309    8,256 
                                    
                                Total     16,401      9,132    25,533 

                                Comment

                                Working...
                                X