.
. // w/o fixed effects
. logit reemp3 i.hid##i.postperiod_nc b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.
> uh_occmaj_b2 sampjl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate
> _jhu stringd if cutoff3==1 & sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
note: 11.uh_occmaj_b2 omitted because of collinearity.
Iteration 0: log pseudolikelihood = -4548831
Iteration 1: log pseudolikelihood = -4170013
Iteration 2: log pseudolikelihood = -4157356.2
Iteration 3: log pseudolikelihood = -4157310.4
Iteration 4: log pseudolikelihood = -4157310.4
Logistic regression Number of obs = 2,956
Wald chi2(18) = .
Prob > chi2 = .
Log pseudolikelihood = -4157310.4 Pseudo R2 = 0.0861
(Std. err. adjusted for 19 clusters in statefip)
--------------------------------------------------------------------------------------------------------------------
| Robust
reemp3 | Odds ratio std. err. z P>|z| [95% conf. interval]
---------------------------------------------------+----------------------------------------------------------------
1.hid | .7002702 .114058 -2.19 0.029 .5088906 .9636225
1.postperiod_nc | 1.085203 .14369 0.62 0.537 .8371528 1.406751
|
hid#postperiod_nc |
1 1 | 1.76205 .2849347 3.50 0.000 1.283434 2.419151
|
age_group |
18-24 | 1.189933 .2482025 0.83 0.404 .7906317 1.790897
25-34 | .9796921 .1556727 -0.13 0.897 .71752 1.337658
45-54 | .7759897 .1527095 -1.29 0.197 .5276492 1.141213
55-64 | .7718687 .0945646 -2.11 0.035 .607099 .9813577
|
race_wbho |
2 black nh | .7084502 .2038549 -1.20 0.231 .4030677 1.245204
3 hispanic/latino | 1.117986 .2082969 0.60 0.549 .7759704 1.610747
other nh | .8385216 .1684342 -0.88 0.381 .5656309 1.24307
|
edu4 |
1 Less than HS | .8186407 .0904471 -1.81 0.070 .6592479 1.016572
2 HS or GED | .7338577 .0427831 -5.31 0.000 .6546176 .8226896
3 Some college or Associate's' | .8120404 .104228 -1.62 0.105 .631427 1.044317
|
1.woman | .8752548 .1934259 -0.60 0.547 .5675762 1.349724
1.marstdum1 | .8993397 .1351362 -0.71 0.480 .6699168 1.207332
|
woman#marstdum1 |
1 1 | .872963 .1282346 -0.92 0.355 .6545727 1.164217
|
ownkidd_18 |
1: Own children, <18, in HH | .7575139 .1594339 -1.32 0.187 .5014622 1.144308
|
woman#ownkidd_18 |
1#1: Own children, <18, in HH | 1.289486 .3991002 0.82 0.411 .7030191 2.365192
|
marstdum1#ownkidd_18 |
1#1: Own children, <18, in HH | 1.750866 .3841515 2.55 0.011 1.138921 2.69161
|
woman#marstdum1#ownkidd_18 |
1#1#1: Own children, <18, in HH | .7332693 .2613196 -0.87 0.384 .3646831 1.474387
|
ind_nilf |
2 | 1.80553 .8799177 1.21 0.225 .6946644 4.692824
3 | 1.489625 .8054717 0.74 0.461 .5161959 4.298724
4 | 1.444288 .6722382 0.79 0.430 .5800495 3.596187
5 | 1.139385 .6526263 0.23 0.820 .3707763 3.501295
6 | .7451345 .4014118 -0.55 0.585 .259229 2.141834
7 | 1.026434 .7175636 0.04 0.970 .2607773 4.040102
8 | 1.331666 .8172223 0.47 0.641 .3999691 4.433678
9 | 1.314533 .6161779 0.58 0.560 .524538 3.294322
10 | 1.808758 .920045 1.17 0.244 .6674326 4.901778
11 | 1.227343 .6951168 0.36 0.718 .4044647 3.72436
12 | 1.08146 .5506855 0.15 0.878 .3986332 2.933912
13 | 2.524114 1.81093 1.29 0.197 .6186045 10.29923
14 | 2.682423 3.342496 0.79 0.428 .2332746 30.84515
|
uh_occmaj_b2 |
professional and related occupations | 1.379627 .2331624 1.90 0.057 .990616 1.921401
service occupations | 1.010886 .187832 0.06 0.954 .7023298 1.455001
sales and related occupations | 1.676742 .1986558 4.36 0.000 1.329285 2.115019
office and administrative support occupations | 1.205044 .1652741 1.36 0.174 .9209989 1.576692
farming, fishing, and forestry occupations | 5.054637 3.232456 2.53 0.011 1.443258 17.70256
construction and extraction occupations | 1.431595 .4407435 1.17 0.244 .783 2.617451
installation, maintenance, and repair occupations | 1.760672 .3638247 2.74 0.006 1.17432 2.639797
production occupations | 1.031621 .3635775 0.09 0.930 .5170455 2.058315
transportation and material moving occupations | 1.322369 .5263619 0.70 0.483 .6060893 2.885153
armed forces | 1 (omitted)
|
sampjl | 1.226923 .0954013 2.63 0.009 1.053491 1.428907
|
durg |
5-8 weeks | .6224303 .0846339 -3.49 0.000 .4768151 .8125151
9-12 weeks | .6074873 .0809467 -3.74 0.000 .4678601 .7887845
13-16 weeks | .392522 .0648597 -5.66 0.000 .2839311 .5426441
17-20 weeks | .7426054 .1475274 -1.50 0.134 .5031029 1.096123
21-26 weeks | .3930069 .0960117 -3.82 0.000 .2434733 .6343793
27-32 weeks | .3316027 .0958552 -3.82 0.000 .188176 .5843485
33-38 weeks | .6463835 .1520183 -1.86 0.064 .4076639 1.024892
39-44 weeks | .3309865 .048453 -7.55 0.000 .2484296 .4409784
45-50 weeks | .2701556 .095354 -3.71 0.000 .1352615 .5395775
51-52 weeks | .2260038 .0388606 -8.65 0.000 .1613446 .3165753
>52 weeks | .2853079 .0616351 -5.81 0.000 .1868223 .4357114
|
ur_sa | 1.3e-114 2.1e-112 -1.62 0.105 3.0e-252 5.32e+23
ur2_sa | . . 1.49 0.136 0 .
ur3_sa | 0 0 -1.48 0.140 0 .
iur | 3.75e+89 3.27e+91 2.37 0.018 2.75e+15 5.1e+163
iur2 | 0 0 -1.77 0.076 0 .
iur3 | . . 1.50 0.133 0 .
initrate | 4.69e-85 1.08e-82 -0.84 0.400 1.8e-281 1.2e+112
initrate2 | . . 0.57 0.569 0 .
initrate3 | 0 0 -0.27 0.783 0 .
empgrowth | .8336209 .2227394 -0.68 0.496 .493778 1.407361
emp2 | .5464889 .2964898 -1.11 0.265 .188701 1.582664
emp3 | 3.837721 2.121437 2.43 0.015 1.298798 11.3398
l_incrate_jhu | 1.055488 .0706493 0.81 0.420 .9257159 1.203451
stringd | .9955981 .0077031 -0.57 0.569 .9806141 1.010811
_cons | 10.81872 22.86949 1.13 0.260 .1717268 681.5756
--------------------------------------------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
. margins hid, dydx(postperiod_nc) pwcompare(cimargins effects)
Pairwise comparisons of average marginal effects
Model VCE: Robust Number of obs = 2,956
Expression: Pr(reemp3), predict()
dy/dx wrt: 1.postperiod_nc
------------------------------------------------------------------
| Delta-method Unadjusted
| Margin std. err. [95% conf. interval]
-----------------+------------------------------------------------
0.postperiod_nc | (base outcome)
-----------------+------------------------------------------------
1.postperiod_nc |
hid |
0 | .0146819 .0236426 -.0316568 .0610206
1 | .1128607 .0323135 .0495273 .176194
------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base
level.
----------------------------------------------------------------------------------
| Contrast Delta-method Unadjusted Unadjusted
| dy/dx std. err. z P>|z| [95% conf. interval]
-----------------+----------------------------------------------------------------
0.postperiod_nc | (base outcome)
-----------------+----------------------------------------------------------------
1.postperiod_nc |
hid |
1 vs 0 | .0981788 .0263574 3.72 0.000 .0465191 .1498384
----------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
.
. // w/ fixed effects
.
. logit reemp3 i.hid##i.postperiod_nc b3.age_group b1.race_wbho b4.edu4 i.woman##i.marstdum1##i.ownkidd_18 b1.ind_nilf b1.uh_occmaj_b2 samp
> jl b1.durg ur_sa ur2_sa ur3_sa iur iur2 iur3 initrate initrate2 initrate3 empgrowth emp2 emp3 l_incrate_jhu stringd i.year_month i.statef
> ip if cutoff3==1 & sampall==1 & age>=18 & age<65 [pw=wtfinl], vce(cluster statefip) or
note: 11.uh_occmaj_b2 omitted because of collinearity.
note: 743.year_month omitted because of collinearity.
note: 56.statefip omitted because of collinearity.
Iteration 0: log pseudolikelihood = -4548831
Iteration 1: log pseudolikelihood = -4102581.7
Iteration 2: log pseudolikelihood = -4084868
Iteration 3: log pseudolikelihood = -4084825.4
Iteration 4: log pseudolikelihood = -4084825.4
Logistic regression Number of obs = 2,956
Wald chi2(17) = .
Prob > chi2 = .
Log pseudolikelihood = -4084825.4 Pseudo R2 = 0.1020
(Std. err. adjusted for 19 clusters in statefip)
--------------------------------------------------------------------------------------------------------------------
| Robust
reemp3 | Odds ratio std. err. z P>|z| [95% conf. interval]
---------------------------------------------------+----------------------------------------------------------------
1.hid | 1.363283 .853181 0.50 0.620 .3998342 4.648277
1.postperiod_nc | 1.190843 .896832 0.23 0.817 .2721503 5.21075
|
hid#postperiod_nc |
1 1 | 1.515065 .3011399 2.09 0.037 1.026227 2.236759
|
age_group |
18-24 | 1.154654 .2576464 0.64 0.519 .7456195 1.788079
25-34 | .9550559 .1663373 -0.26 0.792 .6788585 1.343626
45-54 | .7404937 .1489847 -1.49 0.135 .4991862 1.098449
55-64 | .760808 .1021689 -2.04 0.042 .584746 .9898808
|
race_wbho |
2 black nh | .6754881 .2079867 -1.27 0.203 .3694263 1.235116
3 hispanic/latino | 1.11792 .2185224 0.57 0.569 .7621217 1.639823
other nh | .8637687 .1747419 -0.72 0.469 .5810292 1.284094
|
edu4 |
1 Less than HS | .8184452 .0919283 -1.78 0.074 .6567228 1.019993
2 HS or GED | .754165 .0455528 -4.67 0.000 .6699655 .8489466
3 Some college or Associate's' | .7973805 .1008995 -1.79 0.074 .6222367 1.021823
|
1.woman | .8557501 .197819 -0.67 0.500 .5439757 1.346215
1.marstdum1 | .860779 .1430002 -0.90 0.367 .6215592 1.192067
|
woman#marstdum1 |
1 1 | .9441973 .1355173 -0.40 0.689 .7126771 1.250929
|
ownkidd_18 |
1: Own children, <18, in HH | .7535746 .1801115 -1.18 0.237 .4717165 1.203848
|
woman#ownkidd_18 |
1#1: Own children, <18, in HH | 1.305396 .4099412 0.85 0.396 .7053983 2.41574
|
marstdum1#ownkidd_18 |
1#1: Own children, <18, in HH | 1.858785 .4656817 2.47 0.013 1.137568 3.037252
|
woman#marstdum1#ownkidd_18 |
1#1#1: Own children, <18, in HH | .6876562 .237751 -1.08 0.279 .3492015 1.35415
|
ind_nilf |
2 | 1.72103 .8403619 1.11 0.266 .6609292 4.481483
3 | 1.449865 .7524491 0.72 0.474 .5242905 4.009434
4 | 1.450273 .6554781 0.82 0.411 .5980441 3.516951
5 | 1.071389 .5806708 0.13 0.899 .370351 3.099424
6 | .7484345 .4048173 -0.54 0.592 .2592694 2.16051
7 | .9208347 .6650484 -0.11 0.909 .2235754 3.79262
8 | 1.248736 .7569864 0.37 0.714 .3806013 4.097046
9 | 1.248748 .5320873 0.52 0.602 .5417271 2.878518
10 | 1.690555 .8468961 1.05 0.295 .6333062 4.512789
11 | 1.160456 .6042375 0.29 0.775 .4182318 3.219886
12 | 1.043095 .4884148 0.09 0.928 .4166396 2.611483
13 | 2.574455 1.849768 1.32 0.188 .6296358 10.52643
14 | 2.527685 3.110576 0.75 0.451 .2265853 28.19772
|
uh_occmaj_b2 |
professional and related occupations | 1.277662 .2232481 1.40 0.161 .9071608 1.799484
service occupations | .9704075 .172422 -0.17 0.866 .6850348 1.374661
sales and related occupations | 1.607134 .1877029 4.06 0.000 1.278313 2.020538
office and administrative support occupations | 1.087359 .1455379 0.63 0.531 .8364569 1.413521
farming, fishing, and forestry occupations | 4.731459 3.031178 2.43 0.015 1.347964 16.60778
construction and extraction occupations | 1.372525 .4213739 1.03 0.302 .7519625 2.505213
installation, maintenance, and repair occupations | 1.819833 .3236284 3.37 0.001 1.284277 2.57872
production occupations | .9760549 .3437679 -0.07 0.945 .489418 1.946564
transportation and material moving occupations | 1.18488 .5009526 0.40 0.688 .5173652 2.713638
armed forces | 1 (omitted)
|
sampjl | 1.235291 .0960775 2.72 0.007 1.060633 1.438711
|
durg |
5-8 weeks | .6175598 .0764235 -3.89 0.000 .4845539 .7870746
9-12 weeks | .573018 .0730965 -4.37 0.000 .4462576 .7357851
13-16 weeks | .3682188 .0563458 -6.53 0.000 .2728053 .4970032
17-20 weeks | .7157984 .1500094 -1.60 0.111 .4746844 1.079385
21-26 weeks | .3962775 .1000765 -3.67 0.000 .2415659 .6500745
27-32 weeks | .3204143 .0910676 -4.00 0.000 .1835628 .5592924
33-38 weeks | .6623046 .1438541 -1.90 0.058 .432688 1.013773
39-44 weeks | .3340678 .0477242 -7.67 0.000 .2524839 .4420135
45-50 weeks | .2608159 .0960372 -3.65 0.000 .1267378 .5367375
51-52 weeks | .2183251 .0382605 -8.68 0.000 .1548583 .3078032
>52 weeks | .2775561 .0575554 -6.18 0.000 .1848594 .4167351
|
ur_sa | 9.3e-137 1.9e-134 -1.51 0.132 0 9.23e+40
ur2_sa | . . 1.47 0.142 0 .
ur3_sa | 0 0 -1.41 0.159 0 .
iur | 4.69e+61 5.38e+63 1.24 0.216 9.06e-37 2.4e+159
iur2 | 0 0 -1.49 0.135 0 .
iur3 | . . 1.72 0.086 0 .
initrate | 1.3e-182 5.2e-180 -1.04 0.296 0 2.3e+159
initrate2 | . . 0.36 0.721 0 .
initrate3 | . . 0.15 0.884 0 .
empgrowth | .8911005 .2501308 -0.41 0.681 .5140383 1.544749
emp2 | .7129206 .4328587 -0.56 0.577 .216882 2.343467
emp3 | 2.539794 1.524825 1.55 0.121 .7829963 8.238293
l_incrate_jhu | 1.346398 .1901113 2.11 0.035 1.020902 1.775673
stringd | 1.005602 .0117884 0.48 0.634 .9827604 1.028974
|
year_month |
733 | 1.801917 .6005156 1.77 0.077 .9376901 3.462664
734 | 2.949058 1.240613 2.57 0.010 1.293001 6.726168
735 | 1.784082 .985896 1.05 0.295 .6039973 5.269806
736 | 1.585574 .8542007 0.86 0.392 .5515898 4.557815
737 | 3.09659 2.044644 1.71 0.087 .848877 11.29595
738 | 1.951316 .6909715 1.89 0.059 .9747931 3.906094
739 | 1.243383 .4608763 0.59 0.557 .6013063 2.57107
740 | .7325305 .237433 -0.96 0.337 .3880862 1.382685
741 | 1.020987 .2614713 0.08 0.935 .6180601 1.686592
742 | .5790098 .1456082 -2.17 0.030 .3536939 .9478601
743 | 1 (omitted)
|
statefip |
arkansas | .7620739 .4846789 -0.43 0.669 .2190953 2.650704
georgia | 1.993363 1.169071 1.18 0.240 .6314983 6.29217
idaho | .6017506 .2258307 -1.35 0.176 .2883829 1.255635
iowa | 1.170538 .6345026 0.29 0.771 .4045597 3.386791
mississippi | .5234015 .2161406 -1.57 0.117 .2329851 1.175823
missouri | .6861566 .080447 -3.21 0.001 .545288 .8634171
montana | 1.566844 .62883 1.12 0.263 .7135241 3.440671
nebraska | .3698216 .3209596 -1.15 0.252 .0674923 2.026424
new hampshire | .3050378 .1093237 -3.31 0.001 .1511083 .6157707
north dakota | .8408417 .2529818 -0.58 0.564 .4662465 1.516397
oklahoma | .8012217 .1718301 -1.03 0.301 .5262644 1.219836
south carolina | .4746652 .1458261 -2.43 0.015 .2599455 .8667473
south dakota | 1.380745 .4087072 1.09 0.276 .7729541 2.466455
tennessee | .7050458 .0614784 -4.01 0.000 .5942845 .8364504
texas | .9461441 .9494129 -0.06 0.956 .1323778 6.76238
utah | .4557265 .3427238 -1.04 0.296 .1043681 1.989942
west virginia | .8811689 .6934727 -0.16 0.872 .1884389 4.12048
wyoming | 1 (omitted)
|
_cons | 7.352945 32.34522 0.45 0.650 .0013246 40818.06
--------------------------------------------------------------------------------------------------------------------
Note: _cons estimates baseline odds.
. margins hid, dydx(postperiod_nc) pwcompare(cimargins effects)
Pairwise comparisons of average marginal effects
Model VCE: Robust Number of obs = 2,956
Expression: Pr(reemp3), predict()
dy/dx wrt: 1.postperiod_nc
------------------------------------------------------------------
| Delta-method Unadjusted
| Margin std. err. [95% conf. interval]
-----------------+------------------------------------------------
0.postperiod_nc | (base outcome)
-----------------+------------------------------------------------
1.postperiod_nc |
hid |
0 | . (not estimable)
1 | . (not estimable)
------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base
level.
----------------------------------------------------------------------------------
| Contrast Delta-method Unadjusted Unadjusted
| dy/dx std. err. z P>|z| [95% conf. interval]
-----------------+----------------------------------------------------------------
0.postperiod_nc | (base outcome)
-----------------+----------------------------------------------------------------
1.postperiod_nc |
hid |
1 vs 0 | . (not estimable)
----------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level.
.
end of do-file
Comment