Dear all,
I am trying to estimate a random intercepts model, using the xtlogit command in Stata 14. Coll_action is a binary dependent variable, where 1 means that an individual engages in collective action. Pp_num1 is the group variable which denotes the neighborhood. educ2 educ3 educ4 educ5 relgn_muslim are individual level variables, and lowinc_housing_census is a neighborhood level variable that indicates the proportion of households with low income in the neighborhood.
I was wondering how to interpret the sigma_u and rho (intraclass correlation) in the models, and look forward to any suggestions.
I am trying to estimate a random intercepts model, using the xtlogit command in Stata 14. Coll_action is a binary dependent variable, where 1 means that an individual engages in collective action. Pp_num1 is the group variable which denotes the neighborhood. educ2 educ3 educ4 educ5 relgn_muslim are individual level variables, and lowinc_housing_census is a neighborhood level variable that indicates the proportion of households with low income in the neighborhood.
I was wondering how to interpret the sigma_u and rho (intraclass correlation) in the models, and look forward to any suggestions.
Code:
//model 1, intercept only . xtlogit coll_action, i(ppnum_1) re vce(robust) Calculating robust standard errors: Random-effects logistic regression Number of obs = 3,983 Group variable: ppnum_1 Number of groups = 200 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 19.9 max = 56 Integration method: mvaghermite Integration pts. = 12 Wald chi2(0) = . Log pseudolikelihood = -2565.3776 Prob > chi2 = . (Std. Err. adjusted for 200 clusters in ppnum_1) ------------------------------------------------------------------------------ | Robust coll_action | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | -.6085705 .0585815 -10.39 0.000 -.7233881 -.493753 -------------+---------------------------------------------------------------- /lnsig2u | -.9666286 .1958436 -1.350475 -.5827822 -------------+---------------------------------------------------------------- sigma_u | .616736 .0603919 .5090355 .7472234 rho | .1036347 .0181928 .0730116 .1450915 ------------------------------------------------------------------------------ //model 2, adding individual level variables . xtlogit coll_action educ2 educ3 educ4 educ5 relgn_muslim , i(ppnum_1) re vce(robust) Calculating robust standard errors: Random-effects logistic regression Number of obs = 3,983 Group variable: ppnum_1 Number of groups = 200 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 19.9 max = 56 Integration method: mvaghermite Integration pts. = 12 Wald chi2(5) = 7.92 Log pseudolikelihood = -2560.3897 Prob > chi2 = 0.1608 (Std. Err. adjusted for 200 clusters in ppnum_1) ------------------------------------------------------------------------------ | Robust coll_action | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ2 | -.2358874 .2471499 -0.95 0.340 -.7202923 .2485176 educ3 | .1068126 .137044 0.78 0.436 -.1617886 .3754139 educ4 | -.0034217 .1208636 -0.03 0.977 -.24031 .2334666 educ5 | .0389941 .1312138 0.30 0.766 -.2181803 .2961684 relgn_muslim | .2761378 .1213664 2.28 0.023 .0382641 .5140115 _cons | -.678434 .1210602 -5.60 0.000 -.9157076 -.4411603 -------------+---------------------------------------------------------------- /lnsig2u | -.9823252 .1915234 -1.357704 -.6069463 -------------+---------------------------------------------------------------- sigma_u | .6119146 .058598 .5071989 .7382497 rho | .1021856 .0175711 .0725239 .1421198 ------------------------------------------------------------------------------ //model 2, adding neighborhood level variables . xtlogit coll_action educ2 educ3 educ4 educ5 relgn_muslim lowinc_housing_census, i(ppnum_1) re vce(robust) Calculating robust standard errors: Random-effects logistic regression Number of obs = 3,983 Group variable: ppnum_1 Number of groups = 200 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 19.9 max = 56 Integration method: mvaghermite Integration pts. = 12 Wald chi2(6) = 9.04 Log pseudolikelihood = -2560.1952 Prob > chi2 = 0.1715 (Std. Err. adjusted for 200 clusters in ppnum_1) --------------------------------------------------------------------------------------- | Robust coll_action | Coef. Std. Err. z P>|z| [95% Conf. Interval] ----------------------+---------------------------------------------------------------- educ2 | -.2361818 .2471599 -0.96 0.339 -.7206062 .2482427 educ3 | .1041136 .136647 0.76 0.446 -.1637096 .3719369 educ4 | -.011128 .1194828 -0.09 0.926 -.24531 .2230539 educ5 | .0254471 .1299225 0.20 0.845 -.2291962 .2800905 relgn_muslim | .2785445 .1209994 2.30 0.021 .04139 .515699 lowinc_housing_census | -.1507785 .2571716 -0.59 0.558 -.6548256 .3532685 _cons | -.6423424 .1266259 -5.07 0.000 -.8905246 -.3941602 ----------------------+---------------------------------------------------------------- /lnsig2u | -.9893431 .1886524 -1.359095 -.6195911 ----------------------+---------------------------------------------------------------- sigma_u | .6097712 .0575174 .5068463 .7335969 rho | .1015435 .0172112 .0724303 .1405851 ---------------------------------------------------------------------------------------
Comment