Clyde Schechter According to #74, it might be possible to create a DIDID setting in my context as specified in #75?
-
Login or Register
- Log in with
margins d1#d2 // EXPECTED VALUE OF CSRI IN EACH GROUP PRE- AND POST- margins d1, dydx(d2) // MARGINAL EFFECT OF TREATMENT IN EACH TIME PERIOD
. xtreg anyMMactivity_conistent i.pre_post##i.treatment_2, fe note: 1.treatment_2 omitted because of collinearity Fixed-effects (within) regression Number of obs = 4,152 Group variable: id Number of groups = 2,177 R-sq: Obs per group: within = 0.3550 min = 1 between = 0.0811 avg = 1.9 overall = 0.2027 max = 2 F(2,1973) = 542.92 corr(u_i, Xb) = 0.0188 Prob > F = 0.0000 -------------------------------------------------------------------------------------- anyMMactivity_coni~t | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- 1.pre_post | .3530466 .0231408 15.26 0.000 .3076637 .3984295 1.treatment_2 | 0 (omitted) | pre_post#treatment_2 | 1 1 | .0710889 .0273197 2.60 0.009 .0175104 .1246674 | _cons | .4939788 .0083795 58.95 0.000 .4775452 .5104124 ---------------------+---------------------------------------------------------------- sigma_u | .3280158 sigma_e | .38652689 rho | .41865935 (fraction of variance due to u_i) -------------------------------------------------------------------------------------- F test that all u_i=0: F(2176, 1973) = 1.29 Prob > F = 0.0000
. margins pre_post#treatment_2 //EXPECTED VALUE OF anyMMactivity_conis > tent IN EACH GROUP PRE- AND POST- Adjusted predictions Number of obs = 4,152 Model VCE : Conventional Expression : Linear prediction, predict() -------------------------------------------------------------------------------------- | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] ---------------------+---------------------------------------------------------------- pre_post#treatment_2 | 0 0 | . (not estimable) 0 1 | . (not estimable) 1 0 | . (not estimable) 1 1 | . (not estimable) -------------------------------------------------------------------------------------- . margins pre_post, dydx(treatment_2) //MARGINAL EFFECT OF TREATMENT IN EACH > TIME PERIOD Conditional marginal effects Number of obs = 4,152 Model VCE : Conventional Expression : Linear prediction, predict() dy/dx w.r.t. : 1.treatment_2 -------------------------------------------------------------------------------- | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] ---------------+---------------------------------------------------------------- 0.treatment_2 | (base outcome) ---------------+---------------------------------------------------------------- 1.treatment_2 | pre_post | 0 | . (not estimable) 1 | . (not estimable) -------------------------------------------------------------------------------- Note: dy/dx for factor levels is the discrete change from the base level.
(1) | (2) | (3) | |
VARIABLES | Log Income | Log Income | Log Income |
SHG*Covid | 0.0459** | -0.00859 | -0.0644*** |
(0.0224) | (0.0214) | (0.0159) | |
SHG*Rural | 0.249*** | ||
(0.0297) | |||
SHG*Rural*Covid | -0.145*** | ||
Log Expenses | 0.947*** | ||
(0.0260) | (0.012) | ||
COVID | 0.133*** | 0.136*** | -0.192*** |
(0.0243) | (0.0241) | (0.0222) | |
SHG | 0.0267 | 0.115*** | -0.0115 |
(0.0163) | (0.0144) | (0.0102) | |
Education | 0.132*** | 0.132*** | 0.0477*** |
(0.00447) | (0.00448) | (0.003) | |
Gender | 0.0739*** | 0.0721*** | 0.0168** |
(0.0115) | (0.0116) | (0.008) | |
Constant | 10.68*** | 10.67*** | 2.026*** |
(0.183) | (0.180) | (0.199) | |
Observations | 18,753 | 18,753 | 18,753 |
R-squared | 0.200 | 0.196 | 0.526 |
State Fixed effect | Yes | Yes | Yes |
Period fixed effect | Yes | Yes | Yes |
Period fixed effect | Yes | Yes | Yes |
Comment