Dear Statalist,
I have a dataset with similar properties as the following:
TREAT GENDER AGE
1 1 32
1 1 43
1 1 23
1 1 55
1 1 33
1 1 23
1 1 56
0 1 34
0 2 54
0 2 40
I am running a probit with TREAT as the dependent variable. In this case, GENDER can take on 2 values - 1 or 2, but all the obs with GENDER=2 are untreated.
I tried running a probit followed by a predict
However, no score is generated and the log is appended below
note: 1.GENDER != 1 predicts failure perfectly
1.GENDER dropped and 2 obs not used
note: 2.GENDER omitted because of collinearity
Iteration 0: log likelihood = -3.0141613
Iteration 1: log likelihood = -2.9598644
Iteration 2: log likelihood = -2.9592964
Iteration 3: log likelihood = -2.9592962
Probit regression Number of obs = 8
LR chi2(1) = 0.11
Prob > chi2 = 0.7405
Log likelihood = -2.9592962 Pseudo R2 = 0.0182
------------------------------------------------------------------------------
TREAT | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
2.GENDER | 0 (empty)
AGE | .0177287 .0551661 0.32 0.748 -.0903949 .1258524
_cons | .5144595 2.008838 0.26 0.798 -3.422791 4.45171
------------------------------------------------------------------------------
. predict double score
(option pr assumed; Pr(TREAT))
(10 missing values generated)
. summ score
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
score | 0
By changing the reference category, the score can be generated for observations with GENDER = 1
Does anyone know why will changing the base cause the output to be different in this case and what will be the appropriate solution when running a dataset like this?
Thanks in advance.
I have a dataset with similar properties as the following:
TREAT GENDER AGE
1 1 32
1 1 43
1 1 23
1 1 55
1 1 33
1 1 23
1 1 56
0 1 34
0 2 54
0 2 40
I am running a probit with TREAT as the dependent variable. In this case, GENDER can take on 2 values - 1 or 2, but all the obs with GENDER=2 are untreated.
I tried running a probit followed by a predict
Code:
probit TREAT i.GENDER AGE predict double score summ score
note: 1.GENDER != 1 predicts failure perfectly
1.GENDER dropped and 2 obs not used
note: 2.GENDER omitted because of collinearity
Iteration 0: log likelihood = -3.0141613
Iteration 1: log likelihood = -2.9598644
Iteration 2: log likelihood = -2.9592964
Iteration 3: log likelihood = -2.9592962
Probit regression Number of obs = 8
LR chi2(1) = 0.11
Prob > chi2 = 0.7405
Log likelihood = -2.9592962 Pseudo R2 = 0.0182
------------------------------------------------------------------------------
TREAT | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
2.GENDER | 0 (empty)
AGE | .0177287 .0551661 0.32 0.748 -.0903949 .1258524
_cons | .5144595 2.008838 0.26 0.798 -3.422791 4.45171
------------------------------------------------------------------------------
. predict double score
(option pr assumed; Pr(TREAT))
(10 missing values generated)
. summ score
Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------
score | 0
By changing the reference category, the score can be generated for observations with GENDER = 1
Code:
probit TREAT ib2.GENDER AGE
Thanks in advance.
Comment