Hello! I have performed a sem analysis, and I have also tested the goodness of fit of my model with the Stata command of "estat gof, stats(all)". The outcome it has given me is confusing me. It is the first time I am performing this statistic, and although I have read the SEM Stata reference manul and also idre ucla article on that, I really do not understand how to interpret the chi2. Here is the outcome.
----------------------------------------------------------------------------
Fit statistic | Value Description
---------------------+------------------------------------------------------
Likelihood ratio |
chi2_ms(0) | 0.000 model vs. saturated
p > chi2 | .
chi2_bs(11) | 86.468 baseline vs. saturated
p > chi2 | 0.000
---------------------+------------------------------------------------------
Population error |
RMSEA | 0.000 Root mean squared error of approximation
90% CI, lower bound | 0.000
upper bound | 0.000
pclose | 1.000 Probability RMSEA <= 0.05
---------------------+------------------------------------------------------
Information criteria |
AIC | 20059.081 Akaike's information criterion
BIC | 20112.062 Bayesian information criterion
---------------------+------------------------------------------------------
Baseline comparison |
CFI | 1.000 Comparative fit index
TLI | 1.000 Tucker-Lewis index
---------------------+------------------------------------------------------
Size of residuals |
SRMR | 0.000 Standardized root mean squared residual
CD | 0.132 Coefficient of determination
----------------------------------------------------------------------------
*/
So my main question is : Why the chi2 reporting my model versus saturated model equals to 0.000. Does it mean that my independent variables contain measurement errors? In that case, how do I need to interpret the second chi2? baseline versus saturated. At first sight it seems to me that the model poorly fits the data, but I am not entirely sure.
Thank you so much for your help
Best
----------------------------------------------------------------------------
Fit statistic | Value Description
---------------------+------------------------------------------------------
Likelihood ratio |
chi2_ms(0) | 0.000 model vs. saturated
p > chi2 | .
chi2_bs(11) | 86.468 baseline vs. saturated
p > chi2 | 0.000
---------------------+------------------------------------------------------
Population error |
RMSEA | 0.000 Root mean squared error of approximation
90% CI, lower bound | 0.000
upper bound | 0.000
pclose | 1.000 Probability RMSEA <= 0.05
---------------------+------------------------------------------------------
Information criteria |
AIC | 20059.081 Akaike's information criterion
BIC | 20112.062 Bayesian information criterion
---------------------+------------------------------------------------------
Baseline comparison |
CFI | 1.000 Comparative fit index
TLI | 1.000 Tucker-Lewis index
---------------------+------------------------------------------------------
Size of residuals |
SRMR | 0.000 Standardized root mean squared residual
CD | 0.132 Coefficient of determination
----------------------------------------------------------------------------
*/
So my main question is : Why the chi2 reporting my model versus saturated model equals to 0.000. Does it mean that my independent variables contain measurement errors? In that case, how do I need to interpret the second chi2? baseline versus saturated. At first sight it seems to me that the model poorly fits the data, but I am not entirely sure.
Thank you so much for your help
Best
Comment