Hi Statalisters,
I am using the "hoi" command to calculate the Human Opportunity Index for 27 states and 2 years and to get the decomposition of the Index for each state comparing the two years. The code I'm using is as follows:
The output of Stata to a state is as follows:
I would like to know how to modify my code in order to capture the following informations:
1 - Coverage (C)
2 - Dissemilarity (D)
3 - Human Opportunity Index (HOI)
4 - Change (p.p.)
5 - Composition (p.p.)
6 - Scale (p.p.)
7 - Equalization (p.p.)
5 - Composition (%)
6 - Scale (%)
7 - Equalization (%)
Thanks in advance.
I am using the "hoi" command to calculate the Human Opportunity Index for 27 states and 2 years and to get the decomposition of the Index for each state comparing the two years. The code I'm using is as follows:
local predictors presmae metrop area logrenpcdef nmorad refsexo refraca medescresp difescresp
local outcomes agua
levelsof uf, local(ufs)
foreach c of local ufs {
display "uf = `c'"
foreach o of varlist `outcomes' {
capture noisily hoi `o' `predictors' [fw = pesopes] ///
if uf == `c', by (ano) format(%9.3f) estimates decomp2
if c(rc) == 2000 { // hoi FAILED DUE TO NO OBSERVATIONS
display "Nao ha observacoes ou o outcome nao e dicotomico `o': analise ignorada"
}
else if c(rc) != 0 { // SOME OTHER ERROR AROSE ATTEMPTING hoi
display in red "Erro encontrado ao executar o ioh com o outcome `o', uf = `c', ano = `y'"
exit c(rc) // SHOW ERROR CODE AND STOP
}
}
}
local outcomes agua
levelsof uf, local(ufs)
foreach c of local ufs {
display "uf = `c'"
foreach o of varlist `outcomes' {
capture noisily hoi `o' `predictors' [fw = pesopes] ///
if uf == `c', by (ano) format(%9.3f) estimates decomp2
if c(rc) == 2000 { // hoi FAILED DUE TO NO OBSERVATIONS
display "Nao ha observacoes ou o outcome nao e dicotomico `o': analise ignorada"
}
else if c(rc) != 0 { // SOME OTHER ERROR AROSE ATTEMPTING hoi
display in red "Erro encontrado ao executar o ioh com o outcome `o', uf = `c', ano = `y'"
exit c(rc) // SHOW ERROR CODE AND STOP
}
}
}
The output of Stata to a state is as follows:
Code:
uf = 53 (sum of wgt is 3,7435e+05) note: metrop dropped because of collinearity Iteration 0: log pseudolikelihood = -555,11988 Iteration 1: log pseudolikelihood = -549,95284 Iteration 2: log pseudolikelihood = -549,63683 Iteration 3: log pseudolikelihood = -549,63609 Logistic regression Number of obs = 1724 Wald chi2(8) = 15,00 Prob > chi2 = 0,0590 Log pseudolikelihood = -549,63609 Pseudo R2 = 0,0099 ------------------------------------------------------------------------------ | Robust agua | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- presmae | -,2627851 ,473094 -0,56 0,579 -1,190032 ,6644622 area | ,7122128 ,242673 2,93 0,003 ,2365825 1,187843 logrenpcdef | -,0157898 ,0214751 -0,74 0,462 -,0578802 ,0263006 nmorad | ,0402422 ,0552911 0,73 0,467 -,0681263 ,1486107 refsexo | ,3394054 1,127855 0,30 0,763 -1,871149 2,54996 refraca | ,1862689 ,1616822 1,15 0,249 -,1306224 ,5031603 medescresp | -,018722 ,0228352 -0,82 0,412 -,0634781 ,0260342 difescresp | ,0011085 ,0337969 0,03 0,974 -,0651322 ,0673493 _cons | 1,425572 1,415576 1,01 0,314 -1,348907 4,200051 ------------------------------------------------------------------------------ (sum of wgt is 3,7435e+05) note: metrop dropped because of collinearity Iteration 0: log pseudolikelihood = -555,11988 Iteration 1: log pseudolikelihood = -549,95284 Iteration 2: log pseudolikelihood = -549,63683 Iteration 3: log pseudolikelihood = -549,63609 Logistic regression Number of obs = 1724 Wald chi2(8) = 15,00 Prob > chi2 = 0,0590 Log pseudolikelihood = -549,63609 Pseudo R2 = 0,0099 ------------------------------------------------------------------------------ | Robust agua | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- presmae | -,2627851 ,473094 -0,56 0,579 -1,190032 ,6644622 area | ,7122128 ,242673 2,93 0,003 ,2365825 1,187843 logrenpcdef | -,0157898 ,0214751 -0,74 0,462 -,0578802 ,0263006 nmorad | ,0402422 ,0552911 0,73 0,467 -,0681263 ,1486107 refsexo | ,3394054 1,127855 0,30 0,763 -1,871149 2,54996 refraca | ,1862689 ,1616822 1,15 0,249 -,1306224 ,5031603 medescresp | -,018722 ,0228352 -0,82 0,412 -,0634781 ,0260342 difescresp | ,0011085 ,0337969 0,03 0,974 -,0651322 ,0673493 _cons | 1,425572 1,415576 1,01 0,314 -1,348907 4,200051 ------------------------------------------------------------------------------ WARNING : ano = 95 : 1 initially selected circunstances were not used to estimate Pi. note: refsexo != 1 predicts success perfectly refsexo dropped and 101 obs not used (sum of wgt is 3,7210e+05) note: metrop dropped because of collinearity Iteration 0: log pseudolikelihood = -127,39502 Iteration 1: log pseudolikelihood = -106,99904 Iteration 2: log pseudolikelihood = -100,02991 Iteration 3: log pseudolikelihood = -97,741978 Iteration 4: log pseudolikelihood = -97,334723 Iteration 5: log pseudolikelihood = -97,325352 Iteration 6: log pseudolikelihood = -97,325344 Logistic regression Number of obs = 1798 Wald chi2(7) = 28,18 Prob > chi2 = 0,0002 Log pseudolikelihood = -97,325344 Pseudo R2 = 0,2360 ------------------------------------------------------------------------------ | Robust agua | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- presmae | ,4367261 ,9265243 0,47 0,637 -1,379228 2,25268 area | ,2214284 ,6466493 0,34 0,732 -1,045981 1,488838 logrenpcdef | ,3554017 ,2264125 1,57 0,116 -,0883587 ,7991622 nmorad | -,3045169 ,1124967 -2,71 0,007 -,5250063 -,0840275 refraca | -,9231166 ,485408 -1,90 0,057 -1,874499 ,0282656 medescresp | ,3880012 ,1011046 3,84 0,000 ,1898399 ,5861625 difescresp | -,1500026 ,0815967 -1,84 0,066 -,3099292 ,0099239 _cons | 2,616778 1,246677 2,10 0,036 ,1733361 5,060221 ------------------------------------------------------------------------------ (sum of wgt is 3,7435e+05) note: metrop dropped because of collinearity Iteration 0: log pseudolikelihood = -555,11988 Iteration 1: log pseudolikelihood = -549,95284 Iteration 2: log pseudolikelihood = -549,63683 Iteration 3: log pseudolikelihood = -549,63609 Logistic regression Number of obs = 1724 Wald chi2(8) = 15,00 Prob > chi2 = 0,0590 Log pseudolikelihood = -549,63609 Pseudo R2 = 0,0099 ------------------------------------------------------------------------------ | Robust agua | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- presmae | -,2627851 ,473094 -0,56 0,579 -1,190032 ,6644622 area | ,7122128 ,242673 2,93 0,003 ,2365825 1,187843 logrenpcdef | -,0157898 ,0214751 -0,74 0,462 -,0578802 ,0263006 nmorad | ,0402422 ,0552911 0,73 0,467 -,0681263 ,1486107 refsexo | ,3394054 1,127855 0,30 0,763 -1,871149 2,54996 refraca | ,1862689 ,1616822 1,15 0,249 -,1306224 ,5031603 medescresp | -,018722 ,0228352 -0,82 0,412 -,0634781 ,0260342 difescresp | ,0011085 ,0337969 0,03 0,974 -,0651322 ,0673493 _cons | 1,425572 1,415576 1,01 0,314 -1,348907 4,200051 ------------------------------------------------------------------------------ WARNING : ano = 2002 : 2 initially selected circunstances were not used to estimate Pi. -------------------------------------------------------------------------- | Type By: ano and Variable | Values Std Error LB (95) UB (95) ------------------------------+------------------------------------------- 95 | Coverage (C) | 90,140 0,716 88,737 91,543 Dissemilarity (D) | 0,907 1,242 -1,527 3,341 Human Opportunity Index (HOI) | 89,322 0,809 87,736 90,908 Pseudo R2 | 0,010 Obs Logit | 1724,000 Obs | 1724,000 Wtg Pop | 3,74e+05 Vulnerable Pop | 1,29e+05 Vulnerable (%) | 34,514 Obs 1 | 1724,000 Obs 2 | 1724,000 Loss (%) | 0,000 ------------------------------+------------------------------------------- 2002 | Coverage (C) | 98,666 0,253 98,170 99,161 Dissemilarity (D) | 0,811 0,916 -0,985 2,608 Human Opportunity Index (HOI) | 97,865 0,405 97,071 98,659 Pseudo R2 | 0,236 Obs Logit | 1798,000 Obs | 1798,000 Wtg Pop | 3,72e+05 Vulnerable Pop | 93747,000 Vulnerable (%) | 25,194 Obs 1 | 1899,000 Obs 2 | 1899,000 Loss (%) | 0,000 -------------------------------------------------------------------------- ------------------------------------------------ Decomposition 2: Composition, | Equalizatio and Scale effects | By: ano and Variable | 95 2002 ------------------------------+----------------- Original | Coverage (C) | 90,140 98,666 Dissemilarity (D) | 0,907 0,811 Human Opportunity Index (HOI) | 89,322 97,865 ------------------------------+----------------- Decomposition (p.p.) | Change (p.p.) | 8,543 Composition (p.p.) | -0,371 Scale (p.p.) | 8,840 Equalization (p.p.) | 0,074 ------------------------------+----------------- Decomposition (%) | Composition (%) | -4,341 Scale (%) | 103,478 Equalization (%) | 0,863 ------------------------------------------------
I would like to know how to modify my code in order to capture the following informations:
1 - Coverage (C)
2 - Dissemilarity (D)
3 - Human Opportunity Index (HOI)
4 - Change (p.p.)
5 - Composition (p.p.)
6 - Scale (p.p.)
7 - Equalization (p.p.)
5 - Composition (%)
6 - Scale (%)
7 - Equalization (%)
Thanks in advance.
Comment