Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Unit root test pperron & dfuller

    Hello everybody,

    I am a little confused how to interprete Stata 13.1's output from the unit root tests dfuller and pperron.

    I'm using monthly data from Jan 1985 to Jan 2016.
    The variable FEDD contains the value of $100 from Jan 2004, in/decreasing with the federal funds rate.
    Click image for larger version

Name:	FEDD.png
Views:	1
Size:	7.1 KB
ID:	1337769

    The Variable CPIC is the core CPI
    Click image for larger version

Name:	CPIC.png
Views:	1
Size:	7.3 KB
ID:	1337764
    When checking for unit root without trend for CPIC , there is no unit root at the 1% level but at the 5% level for perrons(-3.055) and no unit root at all for dfuller (-4.046).
    If i allow trend, the Z(t) statistics are -1.821 and -1.696 ( bigger than the 10% CV -3.130) , making it impossible to reject H0 -> CPIC is non-stationary.

    When checking for unit root without trend for FEDD , there is no unit root (dfullers -10.16 and perrons -4.290 are both smaller than the 1% CV of -3.450).
    If I allow trend, the Z(t) statistics turn positive (8.788 and 3.157).

    What does that mean/How do I have to interpret that?




    the outputs are:
    dfuller FEDD
    Dickey-Fuller test for unit root Number of obs = 371

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(t) -10.160 -3.450 -2.875 -2.570
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 0.0000

    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

    pperron FEDD

    Phillips-Perron test for unit root Number of obs = 371
    Newey-West lags = 5

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(rho) -0.965 -20.397 -14.000 -11.200
    Z(t) -4.290 -3.450 -2.875 -2.570
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 0.0005


    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

    . dfuller FEDD, trend regress

    Dickey-Fuller test for unit root Number of obs = 371

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(t) 8.788 -3.985 -3.425 -3.130
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 1.0000

    ------------------------------------------------------------------------------
    D.FEDD | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    FEDD |
    L1. | .0115549 .0013148 8.79 0.000 .0089694 .0141403
    _trend | -.0035999 .000331 -10.87 0.000 -.0042508 -.0029489
    _cons | -.1061739 .0538242 -1.97 0.049 -.2120154 -.0003323
    -------------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 1.0000

    ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
    pperon FEDD, trend regress

    Phillips-Perron test for unit root Number of obs = 371
    Newey-West lags = 5

    ---------- Interpolated Dickey-Fuller ---------
    Test 1% Critical 5% Critical 10% Critical
    Statistic Value Value Value
    ------------------------------------------------------------------------------
    Z(rho) 3.718 -28.642 -21.397 -18.048
    Z(t) 3.157 -3.985 -3.425 -3.130
    ------------------------------------------------------------------------------
    MacKinnon approximate p-value for Z(t) = 1.0000

    ------------------------------------------------------------------------------
    FEDD | Coef. Std. Err. t P>|t| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    FEDD |
    L1. | 1.011555 .0013148 769.37 0.000 1.008969 1.01414
    _trend | -.0035999 .000331 -10.87 0.000 -.0042508 -.0029489
    _cons | -.1061739 .0538242 -1.97 0.049 -.2120154 -.0003323
    ------------------------------------------------------------------------------


    FEDD values
    FEDD
    20.9676142
    21.1975046
    21.4714597
    21.7679727
    21.9581071
    22.1268223
    22.2873196
    22.4558308
    22.6443064
    22.870538
    23.143823
    23.4792939
    23.8269636
    24.1255721
    24.4032433
    24.6980528
    25.0530637
    25.4190587
    25.790581
    26.1495102
    26.4741836
    26.7872361
    27.0733979
    27.3373988
    27.6190799
    27.9397988
    28.2580826
    28.5868439
    28.9158616
    29.2343929
    29.5271188
    29.769328
    30.0112555
    30.2469003
    30.4730394
    30.6872662
    30.9058387
    31.1173796
    31.3332537
    31.5559443
    31.7748609
    32.0014248
    32.2411729
    32.4871687
    32.731304
    32.9810395
    33.227367
    33.4770647
    33.7355679
    33.9929658
    34.2611739
    34.5401277
    34.8247735
    35.1310629
    35.441641
    35.7672738
    36.0891531
    36.3802384
    36.6555832
    36.9019421
    37.1502424
    37.4036626
    37.6608355
    37.9124925
    38.1576001
    38.3879621
    38.6313723
    38.8772267
    39.123437
    39.3751583
    39.6291108
    39.888699
    40.1540071
    40.4083033
    40.6535135
    40.8846478
    41.1110092
    41.3399132
    41.5616561
    41.7715038
    41.9695452
    42.1701852
    42.37645
    42.6097414
    42.8319293
    43.0448122
    43.257734
    43.4785319
    43.7212999
    43.9589068
    44.1933159
    44.4331411
    44.6902843
    44.9555512
    45.1981006
    45.4455072
    45.6971202
    45.9415165
    46.1857756
    46.4414871
    46.7044378
    46.9860338
    47.2795773
    47.5834084
    47.8958387
    48.2151461
    48.5380759
    48.8770532
    49.2338401
    49.5973956
    49.9868285
    50.379319
    50.7737356
    51.1599648
    51.5412807
    51.9123584
    52.2865076
    52.6593254
    53.0217972
    53.3822549
    53.735657
    54.0913987
    54.450753
    54.8124946
    55.1728158
    55.5397819
    55.9057453
    56.2706517
    56.6414309
    57.0106998
    57.3695332
    57.7087158
    58.0322967
    58.3285075
    58.6220922
    58.9018781
    59.1792715
    59.4584396
    59.7431573
    60.0188364
    60.2857937
    60.5424438
    60.7813766
    61.005223
    61.2073898
    61.4112102
    61.6122545
    61.8025534
    61.9964264
    62.186913
    62.3584111
    62.5268519
    62.6932181
    62.852919
    63.008441
    63.1643478
    63.3206404
    63.4773198
    63.6379892
    63.7928727
    63.9496857
    64.1094772
    64.2707074
    64.4307799
    64.5922959
    64.7526456
    64.9123431
    65.0719079
    65.2334483
    65.4059599
    65.5831619
    65.774621
    65.9862475
    66.2128693
    66.4466423
    66.6881613
    66.9444262
    67.2054184
    67.4909924
    67.7922563
    68.0927129
    68.4166221
    68.7474811
    69.0853707
    69.4227387
    69.7606574
    70.0930526
    70.4198209
    70.7497851
    71.0829752
    71.417172
    71.7489822
    72.0692528
    72.374348
    72.6893651
    72.9982419
    73.3095922
    73.6263501
    73.9474016
    74.2616241
    74.5807248
    74.8994177
    75.223045
    75.5492661
    75.871497
    76.1914813
    76.5200857
    76.8659023
    77.2096235
    77.5561068
    77.9059904
    78.2580703
    78.6105
    78.9626462
    79.3176227
    79.6729365
    80.0330017
    80.3908852
    80.7497312
    81.1082565
    81.4690174
    81.8346149
    82.2057472
    82.5766071
    82.9471751
    83.2884164
    83.618446
    83.9417733
    84.2562876
    84.5834271
    84.9152132
    85.2421981
    85.5738462
    85.9054179
    86.2547226
    86.6075096
    86.9762171
    87.3444189
    87.7252888
    88.1106066
    88.4934175
    88.9038646
    89.3239568
    89.7608624
    90.2147787
    90.6901709
    91.1723469
    91.6513507
    92.1350338
    92.6205449
    93.1086144
    93.5992558
    94.0504172
    94.4709824
    94.8799256
    95.2581573
    95.5898954
    95.9020633
    96.1990441
    96.4891926
    96.7388919
    96.9405222
    97.1077642
    97.2586043
    97.3961233
    97.5362338
    97.6757458
    97.8162585
    97.9585779
    98.1011044
    98.2414243
    98.3827508
    98.5250876
    98.6684383
    98.7803836
    98.8818811
    98.9826681
    99.0860045
    99.1886324
    99.2921838
    99.3958433
    99.4979732
    99.5829751
    99.6680496
    99.7507281
    99.8351223
    99.9179394
    100
    100.08378
    100.167629
    100.251549
    100.33554
    100.420429
    100.525266
    100.640972
    100.772533
    100.919154
    101.076741
    101.25525
    101.442347
    101.650475
    101.868963
    102.101177
    102.352158
    102.606246
    102.880913
    103.174612
    103.479976
    103.798756
    104.137731
    104.492037
    104.854255
    105.237896
    105.629678
    106.042333
    106.468446
    106.901363
    107.355616
    107.81436
    108.275065
    108.737738
    109.202388
    109.669024
    110.136782
    110.608286
    111.081809
    111.556475
    112.03317
    112.511902
    112.993575
    113.460226
    113.920668
    114.361165
    114.77959
    115.186674
    115.559134
    115.843197
    116.101615
    116.318988
    116.509195
    116.699712
    116.894361
    117.088378
    117.276008
    117.381038
    117.416194
    117.435745
    117.450415
    117.471926
    117.490509
    117.505186
    117.522797
    117.543344
    117.559004
    117.575646
    117.590333
    117.602085
    117.613839
    117.625594
    117.636371
    117.649107
    117.664782
    117.684375
    117.703971
    117.721612
    117.739256
    117.757882
    117.77749
    117.796122
    117.814757
    117.833394
    117.850075
    117.865776
    117.879519
    117.889337
    117.898175
    117.907014
    117.91389
    117.923712
    117.932552
    117.939429
    117.947289
    117.955149
    117.96301
    117.972836
    117.985609
    117.999365
    118.014105
    118.03081
    118.046536
    118.059317
    118.074064
    118.088813
    118.104547
    118.121265
    118.13602
    118.150777
    118.165536
    118.179313
    118.191125
    118.200969
    118.209831
    118.218693
    118.226571
    118.235435
    118.244299
    118.253163
    118.260059
    118.266955
    118.274837
    118.283704
    118.292572
    118.302425
    118.311294
    118.320163
    118.329034
    118.337905
    118.346777
    118.358605
    118.370434
    118.381279
    118.392125
    118.403958
    118.416778
    118.428613
    118.441435
    118.455244
    118.468069
    118.480896
    118.492737
    118.514439
    118.547966
    Last edited by Horst Schlemmeringen; 27 Apr 2016, 05:30.
Working...
X