Dear colleague i need your help , could you please telle me when i should use probit or logit,
doses the use of logit need a specific test
thak you so much
doses the use of logit need a specific test
thak you so much
. sysuse auto, clear (1978 Automobile Data) . . logit foreign weight Iteration 0: log likelihood = -45.03321 Iteration 1: log likelihood = -30.669507 Iteration 2: log likelihood = -29.068209 Iteration 3: log likelihood = -29.054005 Iteration 4: log likelihood = -29.054002 Iteration 5: log likelihood = -29.054002 Logistic regression Number of obs = 74 LR chi2(1) = 31.96 Prob > chi2 = 0.0000 Log likelihood = -29.054002 Pseudo R2 = 0.3548 ------------------------------------------------------------------------------ foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- weight | -.0025874 .0006094 -4.25 0.000 -.0037817 -.001393 _cons | 6.282599 1.603967 3.92 0.000 3.138882 9.426316 ------------------------------------------------------------------------------ . local logistic_coefficient = _b[weight] . local logistic_constant = _b[_cons] . margins, at(weight = (2000 4000)) Adjusted predictions Number of obs = 74 Model VCE : OIM Expression : Pr(foreign), predict() 1._at : weight = 2000 2._at : weight = 4000 ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at | 1 | .7517233 .0897134 8.38 0.000 .5758882 .9275583 2 | .0168411 .0153552 1.10 0.273 -.0132545 .0469367 ------------------------------------------------------------------------------ . . probit foreign weight Iteration 0: log likelihood = -45.03321 Iteration 1: log likelihood = -29.534424 Iteration 2: log likelihood = -28.912832 Iteration 3: log likelihood = -28.908406 Iteration 4: log likelihood = -28.908406 Probit regression Number of obs = 74 LR chi2(1) = 32.25 Prob > chi2 = 0.0000 Log likelihood = -28.908406 Pseudo R2 = 0.3581 ------------------------------------------------------------------------------ foreign | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- weight | -.0015049 .0003265 -4.61 0.000 -.0021447 -.0008651 _cons | 3.655625 .8775791 4.17 0.000 1.935601 5.375648 ------------------------------------------------------------------------------ . local probit_coefficient = _b[weight] . local probit_constant = _b[_cons] . margins, at(weight = (2000 4000)) Adjusted predictions Number of obs = 74 Model VCE : OIM Expression : Pr(foreign), predict() 1._at : weight = 2000 2._at : weight = 4000 ------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _at | 1 | .7408037 .0899293 8.24 0.000 .5645455 .9170619 2 | .00904 .0118703 0.76 0.446 -.0142254 .0323055 ------------------------------------------------------------------------------ . . display `logistic_coefficient'/`probit_coefficient' 1.7193088 . display `logistic_constant'/`probit_constant' 1.7186116 . display c(pi)/sqrt(3) 1.8137994
Comment