I have a survey dataset containing 70 or so Likert scale items. Some of these are, unsurprisingly, missing. My boss and I would like to run Stas Kolenikov's polychoric correlation command on the data, with multiple imputation if possible. It looks like this might not be possible, but I'd like to confirm. I'm aware that the polychoric command is NOT natively supported by mi estimate. This is what I did:
mi impute mvn $surveyitems = age i.race i.gender ... , add(20)
mi estimate: polychoric $surveyitems, pw
Multiple-imputation estimates Imputations = 20
Number of obs = 530
Average RVI = 0.0000
Largest FMI = 0.0000
DF: min = .
avg = .
DF adjustment: Large sample max = .
F( 0, .) = .
Within VCE type: Robust Prob > F = .
------------------------------------------------------------------------------
__000005 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | .4450337 .0502578 8.86 0.000 .3465303 .5435371
------------------------------------------------------------------------------
. return list
scalars:
r(level) = 95
matrices:
r(table) : 9 x 1
Needless to say, I do get a full matrix (43x43 in this case) when I run polychoric without MI. Did I miss anything? Is there an alternative polychoric command which supports MI?
Thanks for any help you can provide.
Weiwen Ng, MPH
mi impute mvn $surveyitems = age i.race i.gender ... , add(20)
mi estimate: polychoric $surveyitems, pw
Multiple-imputation estimates Imputations = 20
Number of obs = 530
Average RVI = 0.0000
Largest FMI = 0.0000
DF: min = .
avg = .
DF adjustment: Large sample max = .
F( 0, .) = .
Within VCE type: Robust Prob > F = .
------------------------------------------------------------------------------
__000005 | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | .4450337 .0502578 8.86 0.000 .3465303 .5435371
------------------------------------------------------------------------------
. return list
scalars:
r(level) = 95
matrices:
r(table) : 9 x 1
Needless to say, I do get a full matrix (43x43 in this case) when I run polychoric without MI. Did I miss anything? Is there an alternative polychoric command which supports MI?
Thanks for any help you can provide.
Weiwen Ng, MPH
Comment