Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • GLM and GSEM syntax

    Hi

    Is there a difference between GSEM and GLM family/link syntax? I want to estimate a set of fractional response models. Separately, GLM can estimate each equation, so I assumed that GSEM would fit the same model if the same family-link notation was used. However, results are completely different as shown in the example below.

    Any though on how to write this fractional logit under GSEM notation would be highly appreciated.

    All the best,

    Paul

    -------------
    Example:

    use http://www.ats.ucla.edu/stat/stata/faq/proportion, clear
    gsem (meals <- yr_rnd parented api99, link(logit) family(binomial) ), vce(robust) nolog
    predict v1
    glm meals yr_rnd parented api99, link(logit) family(binomial) vce(robust) nolog
    predict v2
    gen dif=v1-v2
    sum dif

    --------------
    The output is...

    . gsem (meals <- yr_rnd parented api99, family(binomial) link(logit) ), vce(robust) nolog

    Generalized structural equation model Number of obs = 4257
    Log pseudolikelihood = -144.80954

    ------------------------------------------------------------------------------
    | Robust
    | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    meals <- |
    yr_rnd | -.806549 1.043966 -0.77 0.440 -2.852684 1.239586
    parented | -2.741766 .5014297 -5.47 0.000 -3.72455 -1.758981
    api99 | -.0140403 .0051991 -2.70 0.007 -.0242304 -.0038501
    _cons | 26.72637 4.044309 6.61 0.000 18.79967 34.65307
    ------------------------------------------------------------------------------

    .
    . glm meals yr_rnd parented api99, link(logit) family(binomial) vce(robust) nolog
    note: meals has noninteger values

    Generalized linear models No. of obs = 4257
    Optimization : ML Residual df = 4253
    Scale parameter = 1
    Deviance = 395.8141242 (1/df) Deviance = .093067
    Pearson = 374.7025759 (1/df) Pearson = .0881031

    Variance function: V(u) = u*(1-u/1) [Binomial]
    Link function : g(u) = ln(u/(1-u)) [Logit]

    AIC = .7220973
    Log pseudolikelihood = -1532.984106 BIC = -35143.61

    ------------------------------------------------------------------------------
    | Robust
    meals | Coef. Std. Err. z P>|z| [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    yr_rnd | .0482527 .0321714 1.50 0.134 -.0148021 .1113074
    parented | -.7662598 .0390715 -19.61 0.000 -.8428386 -.6896811
    api99 | -.0073046 .0002156 -33.89 0.000 -.0077271 -.0068821
    _cons | 6.75343 .0896767 75.31 0.000 6.577667 6.929193
    ------------------------------------------------------------------------------


    . sum dif

    Variable | Obs Mean Std. Dev. Min Max
    -------------+--------------------------------------------------------
    dif | 4257 .4718934 .2702031 .0229145 .8948619



Working...
X