Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • When my FE and RE models (xtngreg) fail to converge_Continued

    How are you?

    I am sorry to post the same topic twice no the forum.

    Is there anyone who can let me know why my FE and RE models fail to converge?

    For your information, I am using a count dependent variable (the number of homicide on a given day in a given state and the conditional variance is greater than the conditional mean. And, the total number of the independent variables is about 196. So, I run xtnbreg in Stata 14.1. I think that some categorical variables should be dropped from the analysis. Am I right?

    Code:
    xtset REF_STATE REF_TIME
           panel variable:  REF_STATE (strongly balanced)
            time variable:  REF_TIME, 01 Jan 79 to 31 Dec 98
                    delta:  1 day
    This is my FE negative binomial regression model with iterations of 20.

    Code:
     xtnbreg HOMICIDE_COUNTS E_B_14-E_B_1 EXECUTE_DATE E_A_1-E_A_14 NEWS_B_14-NEWS_B_1 NEWS_ON_THE_GIVEN_EXECUTION NEWS_A_1-NEWS_A_14 TV_B_14-TV_B_1 TV_ON_THE_GIVEN_EXECUTION TV_A_1-TV_A_14 ACTIVE_DEATH_PENALTY DUMMY79 DUMMY80 DUMMY81 DUMMY82 DUMMY83 DUMMY84 DUMMY85 DUMMY86 DUMMY88 DUMMY89 DUMMY90 DUMMY91 DUMMY92 DUMMY93 DUMMY94 DUMMY95 DUMMY96 DUMMY97 DUMMY98 jan feb mar may jun jul aug sep oct nov dec SUN_DUMMY MON_DUMMY TUE_DUMMY WED_DUMMY THUR_DUMMY FRI_DUMMY SAT_DUMMY dummy_29 newyear NEW_YEAR_LAG_1 goodfriday Easter_LAG_1 memorial_Day MEMORIAL_LAG_1 independence_Day INDEPENDENCE_LAG_1 labor_day LABOR_LAG_1 thanksgiving THANKSGIVING_LAG_1 christmas CHRISTMAS_LAG_1 STATE_RESIDENTS STATE_PRISONERS STATE_PRISONER_RATE alabama alaska arizona arkansas colorado connecticut delaware washington_dc florida georgia hawaii idaho illinois indiana iowa kansas kentucky louisiana maine maryland massachusetts michigan minnesota mississippi missouri montana nebraska nevada new_hampshire new_jersey new_mexico new_york north_carolina north_dakota ohio oklahoma oregon pennsylvania rhode_island south_carolina south_dakota tennessee texas utah virginia vermont washington west_virginia wisconsin wyoming, fe
     
    note: TV_B_14 omitted because of collinearity
    note: TV_B_13 omitted because of collinearity
    note: TV_B_12 omitted because of collinearity
    note: TV_B_11 omitted because of collinearity
    note: TV_B_10 omitted because of collinearity
    note: TV_B_9 omitted because of collinearity
    note: TV_B_8 omitted because of collinearity
    note: TV_B_7 omitted because of collinearity
    note: TV_A_4 omitted because of collinearity
    note: TV_A_5 omitted because of collinearity
    note: TV_A_6 omitted because of collinearity
    note: TV_A_7 omitted because of collinearity
    note: TV_A_8 omitted because of collinearity
    note: TV_A_9 omitted because of collinearity
    note: TV_A_10 omitted because of collinearity
    note: TV_A_11 omitted because of collinearity
    note: TV_A_12 omitted because of collinearity
    note: TV_A_13 omitted because of collinearity
    note: TV_A_14 omitted because of collinearity
    note: SAT_DUMMY omitted because of collinearity
     
    Iteration 0:   log likelihood = -415987.64
    Iteration 1:   log likelihood = -404760.13  (not concave)
    Iteration 2:   log likelihood = -403248.28  (not concave)
    Iteration 3:   log likelihood =  -403145.1  (not concave)
    Iteration 4:   log likelihood = -403134.91  (not concave)
    Iteration 5:   log likelihood = -403134.91  (not concave)
    Iteration 6:   log likelihood =  -403134.9  (not concave)
    Iteration 7:   log likelihood = -403134.83  (not concave)
    Iteration 8:   log likelihood = -403134.77  (not concave)
    Iteration 9:   log likelihood = -403134.76  (not concave)
    Iteration 10:  log likelihood = -403134.76  (not concave)
    Iteration 11:  log likelihood =  -403134.7  (not concave)
    Iteration 12:  log likelihood = -403134.63  (not concave)
    Iteration 13:  log likelihood = -403134.63  (not concave)
    Iteration 14:  log likelihood = -403134.62  (not concave)
    Iteration 15:  log likelihood = -403134.62  (not concave)
    Iteration 16:  log likelihood = -403134.62  (not concave)
    Iteration 17:  log likelihood = -403134.61  (not concave)
    Iteration 18:  log likelihood = -403134.61  (not concave)
    Iteration 19:  log likelihood =  -403134.6  (not concave)
    Iteration 20:  log likelihood =  -403134.6  (not concave)
    convergence not achieved
     
    Conditional FE negative binomial regression     Number of obs     =    372,526
    Group variable: REF_STATE                       Number of groups  =         51
     
                                                    Obs per group:
                                                                  min =      7,291
                                                                  avg =    7,304.4
                                                                  max =      7,305
     
                                                    Wald chi2(171)    =          .
    Log likelihood  =  -403134.6                    Prob > chi2       =          .
     
    ---------------------------------------------------------------------------------------------
                HOMICIDE_COUNTS |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ----------------------------+----------------------------------------------------------------
                         E_B_14 |    .072223   .0288578     2.50   0.012     .0156627    .1287834
                         E_B_13 |   .0331979   .0286412     1.16   0.246    -.0229377    .0893336
                         E_B_12 |   .0063371   .0282129     0.22   0.822    -.0489592    .0616334
                         E_B_11 |   .0086962   .0278666     0.31   0.755    -.0459214    .0633138
                         E_B_10 |  -.0089882   .0279721    -0.32   0.748    -.0638126    .0458362
                          E_B_9 |   .0377917   .0281933     1.34   0.180    -.0174663    .0930496
                          E_B_8 |   .0993117   .0283375     3.50   0.000     .0437713    .1548522
                          E_B_7 |   .0803985   .0287379     2.80   0.005     .0240733    .1367237
                          E_B_6 |   .0672748    .028163     2.39   0.017     .0120764    .1224732
                          E_B_5 |   .0369834   .0279608     1.32   0.186    -.0178188    .0917855
                          E_B_4 |  -.0186257   .0282228    -0.66   0.509    -.0739414    .0366899
                          E_B_3 |  -.0188527   .0282556    -0.67   0.505    -.0742327    .0365273
                          E_B_2 |    .018677   .0286623     0.65   0.515    -.0375002    .0748541
                          E_B_1 |   .0610474   .0292132     2.09   0.037     .0037905    .1183042
                   EXECUTE_DATE |   .0384437   .0300349     1.28   0.201    -.0204237    .0973111
                          E_A_1 |   .0584959   .0292158     2.00   0.045      .001234    .1157579
                          E_A_2 |   .0409928   .0279566     1.47   0.143    -.0138012    .0957868
                          E_A_3 |  -.0088616   .0281997    -0.31   0.753     -.064132    .0464088
                          E_A_4 |  -.0316388   .0283189    -1.12   0.264    -.0871429    .0238652
                          E_A_5 |  -.0322646   .0290027    -1.11   0.266    -.0891089    .0245797
                          E_A_6 |   .0346549   .0290504     1.19   0.233    -.0222828    .0915926
                          E_A_7 |   .0598607   .0288372     2.08   0.038     .0033408    .1163806
                          E_A_8 |   .0863557   .0278774     3.10   0.002      .031717    .1409944
                          E_A_9 |   .0363015   .0279029     1.30   0.193    -.0183872    .0909901
                         E_A_10 |   .0091589   .0277896     0.33   0.742    -.0453076    .0636255
                         E_A_11 |  -.0027468   .0277989    -0.10   0.921    -.0572316     .051738
                         E_A_12 |   .0430316   .0280677     1.53   0.125      -.01198    .0980433
                         E_A_13 |   .0442301   .0289159     1.53   0.126    -.0124441    .1009043
                         E_A_14 |   .0431949   .0290302     1.49   0.137    -.0137033    .1000932
                      NEWS_B_14 |  -.1255949   .0813264    -1.54   0.123    -.2849918     .033802
                      NEWS_B_13 |    .103043   .0449008     2.29   0.022     .0150391    .1910469
                      NEWS_B_12 |    -.00601   .0425012    -0.14   0.888    -.0893108    .0772908
                      NEWS_B_11 |  -.0230489    .032052    -0.72   0.472    -.0858696    .0397718
                      NEWS_B_10 |  -.0011994   .0478999    -0.03   0.980    -.0950814    .0926826
                       NEWS_B_9 |   .0419296   .0272763     1.54   0.124     -.011531    .0953901
                       NEWS_B_8 |   .0155875   .0261562     0.60   0.551    -.0356776    .0668527
                       NEWS_B_7 |   .0092613   .0275496     0.34   0.737     -.044735    .0632575
                       NEWS_B_6 |   .0084543   .0208371     0.41   0.685    -.0323857    .0492943
                       NEWS_B_5 |   .0071559   .0211163     0.34   0.735    -.0342313    .0485431
                       NEWS_B_4 |   .0057686   .0164141     0.35   0.725    -.0264024    .0379397
                       NEWS_B_3 |   .0187828   .0231916     0.81   0.418    -.0266718    .0642375
                       NEWS_B_2 |  -.0079807   .0152442    -0.52   0.601    -.0378588    .0218975
                       NEWS_B_1 |   .0051763   .0095923     0.54   0.589    -.0136243    .0239768
    NEWS_ON_THE_GIVEN_EXECUTION |   .0077566   .0061186     1.27   0.205    -.0042355    .0197488
                       NEWS_A_1 |   -.001856   .0037016    -0.50   0.616     -.009111    .0053991
                       NEWS_A_2 |   .0004008   .0096108     0.04   0.967    -.0184361    .0192376
                       NEWS_A_3 |  -.0334815   .0183096    -1.83   0.067    -.0693677    .0024047
                       NEWS_A_4 |  -.0217785   .0227728    -0.96   0.339    -.0664123    .0228553
                       NEWS_A_5 |  -.0073113   .0218193    -0.34   0.738    -.0500763    .0354537
                       NEWS_A_6 |   .0458547   .0442958     1.04   0.301    -.0409635    .1326729
                       NEWS_A_7 |   .0340186   .0572131     0.59   0.552     -.078117    .1461542
                       NEWS_A_8 |   .0533057   .0759449     0.70   0.483    -.0955436    .2021549
                       NEWS_A_9 |  -.0184076   .0590349    -0.31   0.755    -.1341139    .0972987
                      NEWS_A_10 |   .1819983   .0637407     2.86   0.004     .0570687    .3069278
                      NEWS_A_11 |   .0905438   .0702083     1.29   0.197     -.047062    .2281496
                      NEWS_A_12 |  -.0925455   .0724286    -1.28   0.201     -.234503    .0494119
                      NEWS_A_13 |   .2519032   .2413479     1.04   0.297      -.22113    .7249364
                      NEWS_A_14 |   .1477908   .1103132     1.34   0.180    -.0684191    .3640006
                        TV_B_14 |          0  (omitted)
                        TV_B_13 |          0  (omitted)
                        TV_B_12 |          0  (omitted)
                        TV_B_11 |          0  (omitted)
                        TV_B_10 |          0  (omitted)
                         TV_B_9 |          0  (omitted)
                         TV_B_8 |          0  (omitted)
                         TV_B_7 |          0  (omitted)
                         TV_B_6 |  -.0089164   .0821862    -0.11   0.914    -.1699985    .1521657
                         TV_B_5 |   .0433135   .0687069     0.63   0.528    -.0913494    .1779765
                         TV_B_4 |  -.1842698    .145718    -1.26   0.206    -.4698718    .1013321
                         TV_B_3 |   -.038108   .0496794    -0.77   0.443    -.1354778    .0592618
                         TV_B_2 |  -.0241972   .0244757    -0.99   0.323    -.0721688    .0237743
                         TV_B_1 |   .0178567   .0133769     1.33   0.182    -.0083616     .044075
      TV_ON_THE_GIVEN_EXECUTION |  -.0069243     .01088    -0.64   0.524    -.0282488    .0144001
                         TV_A_1 |  -.0120575   .0332839    -0.36   0.717    -.0772927    .0531777
                         TV_A_2 |   .0898798   .0976012     0.92   0.357     -.101415    .2811747
                         TV_A_3 |   .0180684   .0490214     0.37   0.712    -.0780119    .1141487
                         TV_A_4 |          0  (omitted)
                         TV_A_5 |          0  (omitted)
                         TV_A_6 |          0  (omitted)
                         TV_A_7 |          0  (omitted)
                         TV_A_8 |          0  (omitted)
                         TV_A_9 |          0  (omitted)
                        TV_A_10 |          0  (omitted)
                        TV_A_11 |          0  (omitted)
                        TV_A_12 |          0  (omitted)
                        TV_A_13 |          0  (omitted)
                        TV_A_14 |          0  (omitted)
           ACTIVE_DEATH_PENALTY |  -.2547375   .0137387   -18.54   0.000    -.2816648   -.2278102
                        DUMMY79 |   .1636361   .0108769    15.04   0.000     .1423178    .1849544
                        DUMMY80 |   .2172006   .0105827    20.52   0.000     .1964589    .2379423
                        DUMMY81 |   .1685799   .0105721    15.95   0.000      .147859    .1893008
                        DUMMY82 |   .0902207   .0106398     8.48   0.000      .069367    .1110743
                        DUMMY83 |  -.0195425   .0107789    -1.81   0.070    -.0406686    .0015837
                        DUMMY84 |  -.0448863   .0107566    -4.17   0.000    -.0659689   -.0238037
                        DUMMY85 |  -.0478786    .010707    -4.47   0.000     -.068864   -.0268932
                        DUMMY86 |   .0378865   .0104169     3.64   0.000     .0174698    .0583033
                        DUMMY88 |    .029456   .0104153     2.83   0.005     .0090425    .0498696
                        DUMMY89 |   .0651112   .0103836     6.27   0.000     .0447597    .0854626
                        DUMMY90 |   .1546628   .0103012    15.01   0.000     .1344727    .1748529
                        DUMMY91 |   .2259401   .0101943    22.16   0.000     .2059596    .2459206
                        DUMMY92 |   .1841083   .0104698    17.58   0.000      .163588    .2046287
                        DUMMY93 |    .217696   .0104974    20.74   0.000     .1971214    .2382705
                        DUMMY94 |   .1891101   .0108283    17.46   0.000      .167887    .2103332
                        DUMMY95 |   .1337645   .0113826    11.75   0.000      .111455    .1560741
                        DUMMY96 |   .0719522   .0118399     6.08   0.000     .0487465    .0951579
                        DUMMY97 |   .0350241   .0120496     2.91   0.004     .0114074    .0586409
                        DUMMY98 |  -.0671233   .0124616    -5.39   0.000    -.0915475    -.042699
                            jan |   .0113167   .0082611     1.37   0.171    -.0048747    .0275082
                            feb |    .020319   .0082874     2.45   0.014     .0040759     .036562
                            mar |  -.0004254   .0081052    -0.05   0.958    -.0163114    .0154606
                            may |   .0144807   .0082033     1.77   0.078    -.0015976     .030559
                            jun |   .0549977   .0081008     6.79   0.000     .0391203     .070875
                            jul |   .1059114   .0080737    13.12   0.000     .0900874    .1217355
                            aug |   .1300949   .0078909    16.49   0.000      .114629    .1455608
                            sep |   .0808598   .0081761     9.89   0.000      .064835    .0968846
                            oct |   .0592032   .0080383     7.37   0.000     .0434485    .0749579
                            nov |   .0279143   .0082914     3.37   0.001     .0116635     .044165
                            dec |   .0422234   .0082057     5.15   0.000     .0261405    .0583064
                      SUN_DUMMY |  -.0786056   .0054836   -14.33   0.000    -.0893533    -.067858
                      MON_DUMMY |   -.312059   .0059598   -52.36   0.000      -.32374    -.300378
                      TUE_DUMMY |  -.3520316   .0060419   -58.26   0.000    -.3638736   -.3401896
                      WED_DUMMY |  -.3678087   .0059989   -61.31   0.000    -.3795663    -.356051
                     THUR_DUMMY |  -.3505068   .0059844   -58.57   0.000    -.3622361   -.3387775
                      FRI_DUMMY |  -.2409475   .0057944   -41.58   0.000    -.2523043   -.2295908
                      SAT_DUMMY |          0  (omitted)
                       dummy_29 |  -.0416922   .0110366    -3.78   0.000    -.0633234   -.0200609
                        newyear |   .6113558   .0239908    25.48   0.000     .5643347     .658377
                 NEW_YEAR_LAG_1 |   .0266272   .0313503     0.85   0.396    -.0348183    .0880728
                     goodfriday |   .0743427   .0320272     2.32   0.020     .0115705    .1371149
                   Easter_LAG_1 |  -.0366815   .0339647    -1.08   0.280     -.103251     .029888
                   memorial_Day |   .0406985   .0324887     1.25   0.210    -.0229782    .1043751
                 MEMORIAL_LAG_1 |   .0932023    .032059     2.91   0.004     .0303679    .1560367
               independence_Day |   .2009106   .0273901     7.34   0.000      .147227    .2545942
             INDEPENDENCE_LAG_1 |    .043118   .0295209     1.46   0.144    -.0147419    .1009779
                      labor_day |   .1659353   .0296495     5.60   0.000     .1078234    .2240473
                    LABOR_LAG_1 |   .0996246   .0311932     3.19   0.001      .038487    .1607622
                   thanksgiving |   .1699348   .0309258     5.49   0.000     .1093213    .2305484
             THANKSGIVING_LAG_1 |   .0739842   .0306576     2.41   0.016     .0138964     .134072
                      christmas |   .1601114   .0290553     5.51   0.000      .103164    .2170588
                CHRISTMAS_LAG_1 |  -.0917426   .0324239    -2.83   0.005    -.1552922    -.028193
                STATE_RESIDENTS |   1.06e-07   3.31e-09    31.95   0.000     9.93e-08    1.12e-07
                STATE_PRISONERS |  -9.17e-06   2.49e-07   -36.86   0.000    -9.66e-06   -8.69e-06
            STATE_PRISONER_RATE |   .0005794   .0000316    18.36   0.000     .0005175    .0006412
                        alabama |  -4.378142   .2501127   -17.50   0.000    -4.868354    -3.88793
                         alaska |  -7.581555   .2461227   -30.80   0.000    -8.063946   -7.099163
                        arizona |  -4.872936   .2480146   -19.65   0.000    -5.359035   -4.386836
                       arkansas |  -5.300156   .2392963   -22.15   0.000    -5.769168   -4.831144
                       colorado |  -5.597914   .2383725   -23.48   0.000    -6.065115   -5.130712
                    connecticut |  -5.928583   .2373001   -24.98   0.000    -6.393682   -5.463483
                       delaware |   -7.44167   .2559057   -29.08   0.000    -7.943236   -6.940104
                  washington_dc |  -5.127385   .2637477   -19.44   0.000    -5.644321   -4.610449
                        florida |  -4.291019   .2467389   -17.39   0.000    -4.774618   -3.807419
                        georgia |   -4.30965   .2422654   -17.79   0.000    -4.784482   -3.834819
                         hawaii |  -7.459021   .2464075   -30.27   0.000    -7.941971   -6.976071
                          idaho |  -7.604584   .2521814   -30.16   0.000    -8.098851   -7.110318
                       illinois |  -4.356974   .2443986   -17.83   0.000    -4.835987   -3.877962
                        indiana |   -4.73288   .2576214   -18.37   0.000    -5.237809   -4.227951
                           iowa |   -7.26359     .24276   -29.92   0.000     -7.73939   -6.787789
                         kansas |  -6.385772   .2348415   -27.19   0.000    -6.846052   -5.925491
                       kentucky |  -5.222458   .2428681   -21.50   0.000    -5.698471   -4.746445
                      louisiana |  -4.305524   .2405232   -17.90   0.000     -4.77694   -3.834107
                          maine |  -7.930229   .2601815   -30.48   0.000    -8.440175   -7.420283
                       maryland |  -4.459367   .2530153   -17.62   0.000    -4.955268   -3.963467
                  massachusetts |  -5.709914   .2461843   -23.19   0.000    -6.192426   -5.227402
                       michigan |  -4.632073   .2413985   -19.19   0.000    -5.105205   -4.158941
                      minnesota |  -6.519566   .2386626   -27.32   0.000    -6.987336   -6.051796
                    mississippi |  -4.696687   .2432474   -19.31   0.000    -5.173443   -4.219931
                       missouri |  -4.420423   .2546286   -17.36   0.000    -4.919485    -3.92136
                        montana |  -7.378037   .2510604   -29.39   0.000    -7.870107   -6.885968
                       nebraska |  -7.066626   .2442784   -28.93   0.000    -7.545403   -6.587849
                         nevada |  -6.046191   .2353813   -25.69   0.000     -6.50753   -5.584852
                  new_hampshire |  -8.094007   .2672674   -30.28   0.000    -8.617841   -7.570172
                     new_jersey |  -4.675191   .2741257   -17.05   0.000    -5.212468   -4.137915
                     new_mexico |  -5.896493   .2338258   -25.22   0.000    -6.354783   -5.438203
                       new_york |  -4.145537   .4761172    -8.71   0.000    -5.078709   -3.212364
                 north_carolina |  -4.295052   .2482794   -17.30   0.000    -4.781671   -3.808433
                   north_dakota |   -8.58617   .2921077   -29.39   0.000    -9.158691    -8.01365
                           ohio |  -4.372529    .287015   -15.23   0.000    -4.935068    -3.80999
                       oklahoma |  -5.399021   .2340853   -23.06   0.000     -5.85782   -4.940222
                         oregon |  -6.140218   .2364159   -25.97   0.000    -6.603585   -5.676852
                   pennsylvania |  -4.340099   .2988335   -14.52   0.000    -4.925801   -3.754396
                   rhode_island |  -7.469178   .2499766   -29.88   0.000    -7.959124   -6.979233
                 south_carolina |  -4.713285   .2489907   -18.93   0.000    -5.201298   -4.225272
                   south_dakota |  -7.808735   .2730177   -28.60   0.000     -8.34384    -7.27363
                      tennessee |  -4.276465   .2500204   -17.10   0.000    -4.766496   -3.786434
                          texas |  -3.468085          .        .       .            .           .
                           utah |  -6.888754   .2428246   -28.37   0.000    -7.364682   -6.412827
                       virginia |  -4.429502   .2608205   -16.98   0.000    -4.940701   -3.918303
                        vermont |  -8.438065          .        .       .            .           .
                     washington |  -5.385913   .2446894   -22.01   0.000    -5.865495   -4.906331
                  west_virginia |   -6.59443   .2341485   -28.16   0.000    -7.053353   -6.135507
                      wisconsin |  -5.960288   .2411684   -24.71   0.000    -6.432969   -5.487606
                        wyoming |  -8.018067   .2681818   -29.90   0.000    -8.543693    -7.49244
                          _cons |   6.374196   .2202872    28.94   0.000     5.942441    6.805951
    ---------------------------------------------------------------------------------------------
    convergence not achieved
    r(430);
     
    . estimates store fixed
    Last edited by Moonki Hong; 01 Nov 2015, 00:22.

  • #2
    I add my RE negative binomial regression model here because of the data limitation. This is the RE negative binomial regression model with the same condition as the FE model (20 iterations).

    Code:
    . xtnbreg HOMICIDE_COUNTS E_B_14-E_B_1 EXECUTE_DATE E_A_1-E_A_14 NEWS_B_14-NEWS_B_1 NEWS_ON_THE_GIVEN_EXECUTION NEWS_A_1-NEWS_A_14 TV_B_14-TV_B_1 TV_ON_THE_GIVEN_EXECUTION TV_A_1-TV_A_14 ACTIVE_DEATH_PENALTY DUMMY79 DUMMY80 DUMMY81 DUMMY82 DUMMY83 DUMMY84 DUMMY85 DUMMY86 DUMMY88 DUMMY89 DUMMY90 DUMMY91 DUMMY92 DUMMY93 DUMMY94 DUMMY95 DUMMY96 DUMMY97 DUMMY98 jan feb mar may jun jul aug sep oct nov dec SUN_DUMMY MON_DUMMY TUE_DUMMY WED_DUMMY THUR_DUMMY FRI_DUMMY SAT_DUMMY dummy_29 newyear NEW_YEAR_LAG_1 goodfriday Easter_LAG_1 memorial_Day MEMORIAL_LAG_1 independence_Day INDEPENDENCE_LAG_1 labor_day LABOR_LAG_1 thanksgiving THANKSGIVING_LAG_1 christmas CHRISTMAS_LAG_1 STATE_RESIDENTS STATE_PRISONERS STATE_PRISONER_RATE alabama alaska arizona arkansas colorado connecticut delaware washington_dc florida georgia hawaii idaho illinois indiana iowa kansas kentucky louisiana maine maryland massachusetts michigan minnesota mississippi missouri montana nebraska nevada new_hampshire new_jersey new_mexico new_york north_carolina north_dakota ohio oklahoma oregon pennsylvania rhode_island south_carolina south_dakota tennessee texas utah virginia vermont washington west_virginia wisconsin wyoming, re
    note: TV_B_14 omitted because of collinearity
    note: TV_B_13 omitted because of collinearity
    note: TV_B_12 omitted because of collinearity
    note: TV_B_11 omitted because of collinearity
    note: TV_B_10 omitted because of collinearity
    note: TV_B_9 omitted because of collinearity
    note: TV_B_8 omitted because of collinearity
    note: TV_B_7 omitted because of collinearity
    note: TV_A_4 omitted because of collinearity
    note: TV_A_5 omitted because of collinearity
    note: TV_A_6 omitted because of collinearity
    note: TV_A_7 omitted because of collinearity
    note: TV_A_8 omitted because of collinearity
    note: TV_A_9 omitted because of collinearity
    note: TV_A_10 omitted because of collinearity
    note: TV_A_11 omitted because of collinearity
    note: TV_A_12 omitted because of collinearity
    note: TV_A_13 omitted because of collinearity
    note: TV_A_14 omitted because of collinearity
    note: SAT_DUMMY omitted because of collinearity
     
    Fitting negative binomial (constant dispersion) model:
     
    Iteration 0:   log likelihood = -1048587.7 
    Iteration 1:   log likelihood = -604949.63 
    Iteration 2:   log likelihood = -423717.94 
    Iteration 3:   log likelihood =  -405236.8 
    Iteration 4:   log likelihood = -405072.23 
    Iteration 5:   log likelihood = -405072.09 
    Iteration 6:   log likelihood = -405072.09 
     
    Iteration 0:   log likelihood = -569992.65 
    Iteration 1:   log likelihood = -556633.53 
    Iteration 2:   log likelihood = -551810.07 
    Iteration 3:   log likelihood =    -551806 
    Iteration 4:   log likelihood =    -551806 
     
    Iteration 0:   log likelihood =    -551806  (not concave)
    Iteration 1:   log likelihood = -541876.92  (not concave)
    Iteration 2:   log likelihood =  -521819.3  (not concave)
    Iteration 3:   log likelihood = -471930.04 
    Iteration 4:   log likelihood = -445570.14 
    Iteration 5:   log likelihood = -406550.45 
    Iteration 6:   log likelihood =  -403001.2 
    Iteration 7:   log likelihood = -402826.25 
    Iteration 8:   log likelihood =  -402824.7 
    Iteration 9:   log likelihood =  -402824.7 
     
    Fitting full model:
     
    Iteration 0:   log likelihood = -417723.63 
    Iteration 1:   log likelihood = -405332.41  (not concave)
    Iteration 2:   log likelihood = -405277.48  (not concave)
    Iteration 3:   log likelihood = -405275.79  (not concave)
    Iteration 4:   log likelihood = -405275.43  (not concave)
    Iteration 5:   log likelihood = -405275.34  (not concave)
    Iteration 6:   log likelihood = -405275.28  (not concave)
    Iteration 7:   log likelihood = -405275.24  (not concave)
    Iteration 8:   log likelihood = -405275.19  (not concave)
    Iteration 9:   log likelihood = -405275.15  (not concave)
    Iteration 10:  log likelihood = -405275.11  (not concave)
    Iteration 11:  log likelihood = -405275.04  (not concave)
    Iteration 12:  log likelihood = -405274.98  (not concave)
    Iteration 13:  log likelihood = -405274.94  (not concave)
    Iteration 14:  log likelihood = -405274.89  (not concave)
    Iteration 15:  log likelihood = -405267.22  (not concave)
    Iteration 16:  log likelihood = -405257.77  (not concave)
    Iteration 17:  log likelihood = -405257.23  (not concave)
    Iteration 18:  log likelihood =  -405257.2  (not concave)
    Iteration 19:  log likelihood = -405257.15  (not concave)
    Iteration 20:  log likelihood = -405257.08  (not concave)
    convergence not achieved
     
    Random-effects negative binomial regression     Number of obs     =    372,526
    Group variable: REF_STATE                       Number of groups  =         51
     
    Random effects u_i ~ Beta                       Obs per group:
                                                                  min =      7,291
                                                                  avg =    7,304.4
                                                                  max =      7,305
     
                                                    Wald chi2(173)    =   53168.28
    Log likelihood  = -405257.08                    Prob > chi2       =     0.0000
     
    ---------------------------------------------------------------------------------------------
                HOMICIDE_COUNTS |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ----------------------------+----------------------------------------------------------------
                         E_B_14 |  -.0301296   .0332441    -0.91   0.365    -.0952868    .0350277
                         E_B_13 |  -.0609297   .0327889    -1.86   0.063    -.1251949    .0033354
                         E_B_12 |  -.0513786   .0316151    -1.63   0.104     -.113343    .0105858
                         E_B_11 |   .0023453   .0303951     0.08   0.938     -.057228    .0619185
                         E_B_10 |  -.0195513   .0305847    -0.64   0.523    -.0794962    .0403936
                          E_B_9 |    .005778    .031348     0.18   0.854     -.055663    .0672189
                          E_B_8 |   .0091058   .0325403     0.28   0.780     -.054672    .0728837
                          E_B_7 |  -.0031675   .0328725    -0.10   0.923    -.0675963    .0612614
                          E_B_6 |  -.0030194   .0319568    -0.09   0.925    -.0656535    .0596147
                          E_B_5 |   .0010235   .0310128     0.03   0.974    -.0597604    .0618074
                          E_B_4 |  -.0571397   .0312588    -1.83   0.068    -.1184059    .0041264
                          E_B_3 |  -.0217178   .0307655    -0.71   0.480    -.0820171    .0385814
                          E_B_2 |    -.03336   .0322125    -1.04   0.300    -.0964954    .0297754
                          E_B_1 |  -.0469496   .0338487    -1.39   0.165    -.1132918    .0193926
                   EXECUTE_DATE |  -.0597301   .0345491    -1.73   0.084    -.1274451    .0079848
                          E_A_1 |  -.0267642   .0331904    -0.81   0.420    -.0918161    .0382878
                          E_A_2 |  -.0117535   .0312934    -0.38   0.707    -.0730874    .0495805
                          E_A_3 |  -.0300562   .0309937    -0.97   0.332    -.0908028    .0306903
                          E_A_4 |  -.0399618   .0309487    -1.29   0.197    -.1006201    .0206965
                          E_A_5 |  -.1100224   .0329933    -3.33   0.001    -.1746881   -.0453566
                          E_A_6 |  -.0701812   .0336425    -2.09   0.037    -.1361193   -.0042432
                          E_A_7 |  -.0479498   .0333753    -1.44   0.151    -.1133641    .0174645
                          E_A_8 |     .01418   .0315626     0.45   0.653    -.0476815    .0760415
                          E_A_9 |  -.0249711   .0314092    -0.80   0.427     -.086532    .0365897
                         E_A_10 |  -.0104679   .0305124    -0.34   0.732     -.070271    .0493353
                         E_A_11 |  -.0221077   .0305492    -0.72   0.469     -.081983    .0377676
                         E_A_12 |   .0316241    .030947     1.02   0.307     -.029031    .0922791
                         E_A_13 |  -.0514317   .0333084    -1.54   0.123    -.1167149    .0138515
                         E_A_14 |  -.0539691   .0334332    -1.61   0.106    -.1194969    .0115588
                      NEWS_B_14 |  -.0700026   .0847728    -0.83   0.409    -.2361543     .096149
                      NEWS_B_13 |   .0717995   .0520154     1.38   0.167    -.0301488    .1737479
                      NEWS_B_12 |   .0069548   .0456402     0.15   0.879    -.0824984     .096408
                      NEWS_B_11 |  -.0229596    .034506    -0.67   0.506      -.09059    .0446709
                      NEWS_B_10 |  -.0022119   .0516491    -0.04   0.966    -.1034423    .0990185
                       NEWS_B_9 |    .021007   .0303768     0.69   0.489    -.0385304    .0805444
                       NEWS_B_8 |   .0208946   .0281823     0.74   0.458    -.0343417    .0761309
                       NEWS_B_7 |   .0068795   .0305804     0.22   0.822    -.0530569     .066816
                       NEWS_B_6 |   .0123342   .0224589     0.55   0.583    -.0316845    .0563528
                       NEWS_B_5 |    .002669   .0229439     0.12   0.907    -.0423003    .0476383
                       NEWS_B_4 |   .0034655   .0177543     0.20   0.845    -.0313324    .0382634
                       NEWS_B_3 |    .036563    .024617     1.49   0.137    -.0116854    .0848114
                       NEWS_B_2 |  -.0205021   .0167502    -1.22   0.221    -.0533319    .0123277
                       NEWS_B_1 |    -.00033   .0107223    -0.03   0.975    -.0213453    .0206853
    NEWS_ON_THE_GIVEN_EXECUTION |   .0064786   .0066679     0.97   0.331    -.0065902    .0195474
                       NEWS_A_1 |  -.0013603   .0040055    -0.34   0.734     -.009211    .0064904
                       NEWS_A_2 |    .001679   .0103553     0.16   0.871    -.0186171     .021975
                       NEWS_A_3 |  -.0328659    .019803    -1.66   0.097     -.071679    .0059472
                       NEWS_A_4 |  -.0193648   .0245699    -0.79   0.431    -.0675209    .0287914
                       NEWS_A_5 |   -.002906   .0234947    -0.12   0.902    -.0489549    .0431428
                       NEWS_A_6 |   .0347306   .0492041     0.71   0.480    -.0617077    .1311689
                       NEWS_A_7 |    .041503   .0622546     0.67   0.505    -.0805139    .1635198
                       NEWS_A_8 |   .0602249   .0816058     0.74   0.461    -.0997196    .2201693
                       NEWS_A_9 |  -.0591969   .0655428    -0.90   0.366    -.1876584    .0692647
                      NEWS_A_10 |    .195573   .0679927     2.88   0.004     .0623097    .3288363
                      NEWS_A_11 |   .0798503   .0765655     1.04   0.297    -.0702154     .229916
                      NEWS_A_12 |  -.0947258   .0773221    -1.23   0.221    -.2462744    .0568227
                      NEWS_A_13 |   .1570619    .282383     0.56   0.578    -.3963986    .7105224
                      NEWS_A_14 |   .1672226   .1201473     1.39   0.164    -.0682617     .402707
                        TV_B_14 |          0  (omitted)
                        TV_B_13 |          0  (omitted)
                        TV_B_12 |          0  (omitted)
                        TV_B_11 |          0  (omitted)
                        TV_B_10 |          0  (omitted)
                         TV_B_9 |          0  (omitted)
                         TV_B_8 |          0  (omitted)
                         TV_B_7 |          0  (omitted)
                         TV_B_6 |  -.0428597   .0919613    -0.47   0.641    -.2231006    .1373812
                         TV_B_5 |    .039659    .073639     0.54   0.590    -.1046709    .1839889
                         TV_B_4 |   -.196803   .1561913    -1.26   0.208    -.5029323    .1093264
                         TV_B_3 |  -.0592006   .0528817    -1.12   0.263    -.1628468    .0444455
                         TV_B_2 |   -.013776   .0263029    -0.52   0.600    -.0653288    .0377768
                         TV_B_1 |   .0209775   .0144254     1.45   0.146    -.0072959    .0492508
      TV_ON_THE_GIVEN_EXECUTION |  -.0041524   .0116682    -0.36   0.722    -.0270216    .0187168
                         TV_A_1 |  -.0122172   .0356054    -0.34   0.732    -.0820024     .057568
                         TV_A_2 |   .0683548   .1061737     0.64   0.520    -.1397419    .2764515
                         TV_A_3 |   .0338043   .0512842     0.66   0.510    -.0667108    .1343194
                         TV_A_4 |          0  (omitted)
                         TV_A_5 |          0  (omitted)
                         TV_A_6 |          0  (omitted)
                         TV_A_7 |          0  (omitted)
                         TV_A_8 |          0  (omitted)
                         TV_A_9 |          0  (omitted)
                        TV_A_10 |          0  (omitted)
                        TV_A_11 |          0  (omitted)
                        TV_A_12 |          0  (omitted)
                        TV_A_13 |          0  (omitted)
                        TV_A_14 |          0  (omitted)
           ACTIVE_DEATH_PENALTY |  -.2406594   .0138425   -17.39   0.000    -.2677902   -.2135286
                        DUMMY79 |   .1038623   .0115381     9.00   0.000     .0812479    .1264766
                        DUMMY80 |   .1702971   .0112417    15.15   0.000     .1482638    .1923304
                        DUMMY81 |   .1396545   .0112068    12.46   0.000     .1176896    .1616194
                        DUMMY82 |   .0737902   .0112538     6.56   0.000     .0517331    .0958472
                        DUMMY83 |  -.0267957   .0114189    -2.35   0.019    -.0491763   -.0044151
                        DUMMY84 |  -.0558727   .0114311    -4.89   0.000    -.0782773   -.0334681
                        DUMMY85 |  -.0540605   .0113585    -4.76   0.000    -.0763227   -.0317983
                        DUMMY86 |   .0331145   .0110766     2.99   0.003     .0114047    .0548243
                        DUMMY88 |   .0341671   .0110496     3.09   0.002     .0125102    .0558239
                        DUMMY89 |   .0701657    .011025     6.36   0.000     .0485571    .0917743
                        DUMMY90 |   .1553384   .0109137    14.23   0.000     .1339479    .1767289
                        DUMMY91 |   .2267155   .0108346    20.93   0.000     .2054801    .2479508
                        DUMMY92 |   .1766389   .0111526    15.84   0.000     .1547802    .1984977
                        DUMMY93 |   .2027749   .0111971    18.11   0.000      .180829    .2247209
                        DUMMY94 |   .1710272   .0115287    14.83   0.000     .1484312    .1936231
                        DUMMY95 |   .1051533   .0121062     8.69   0.000     .0814256     .128881
                        DUMMY96 |    .042025   .0125862     3.34   0.001     .0173566    .0666935
                        DUMMY97 |  -.0041431   .0128157    -0.32   0.746    -.0292614    .0209752
                        DUMMY98 |  -.0886046   .0131996    -6.71   0.000    -.1144754   -.0627338
                            jan |   .0087214   .0088583     0.98   0.325    -.0086406    .0260833
                            feb |   .0178981   .0088907     2.01   0.044     .0004726    .0353236
                            mar |   .0000288    .008682     0.00   0.997    -.0169877    .0170453
                            may |   .0121328   .0088088     1.38   0.168    -.0051321    .0293977
                            jun |   .0548554   .0086863     6.32   0.000     .0378306    .0718802
                            jul |   .1052167   .0086562    12.16   0.000     .0882508    .1221826
                            aug |   .1278847   .0084727    15.09   0.000     .1112786    .1444908
                            sep |   .0788539   .0087735     8.99   0.000     .0616582    .0960497
                            oct |   .0545133   .0086271     6.32   0.000     .0376045     .071422
                            nov |   .0288345   .0088859     3.24   0.001     .0114184    .0462505
                            dec |   .0447089   .0087813     5.09   0.000     .0274978    .0619199
                      SUN_DUMMY |  -.0908231   .0059002   -15.39   0.000    -.1023873   -.0792589
                      MON_DUMMY |  -.3204155   .0063853   -50.18   0.000    -.3329305   -.3079005
                      TUE_DUMMY |  -.3500223   .0064265   -54.47   0.000    -.3626179   -.3374266
                      WED_DUMMY |  -.3640632   .0063768   -57.09   0.000    -.3765616   -.3515649
                     THUR_DUMMY |  -.3490769   .0063628   -54.86   0.000    -.3615476   -.3366061
                      FRI_DUMMY |  -.2386717   .0061815   -38.61   0.000    -.2507872   -.2265562
                      SAT_DUMMY |          0  (omitted)
                       dummy_29 |   .0116891   .0127503     0.92   0.359    -.0133012    .0366793
                        newyear |   .6339144   .0255311    24.83   0.000     .5838744    .6839544
                 NEW_YEAR_LAG_1 |   .0147432   .0338457     0.44   0.663     -.051593    .0810795
                     goodfriday |   .0791237   .0341571     2.32   0.021     .0121771    .1460704
                   Easter_LAG_1 |  -.0409146   .0366747    -1.12   0.265    -.1127956    .0309665
                   memorial_Day |   .0409262   .0350418     1.17   0.243    -.0277545    .1096069
                 MEMORIAL_LAG_1 |   .0633764   .0350396     1.81   0.070       -.0053    .1320528
               independence_Day |   .2133351   .0292998     7.28   0.000     .1559086    .2707616
             INDEPENDENCE_LAG_1 |   .0665028    .031242     2.13   0.033     .0052695     .127736
                      labor_day |     .16592   .0320175     5.18   0.000     .1031669    .2286732
                    LABOR_LAG_1 |   .0848864   .0337866     2.51   0.012     .0186659    .1511069
                   thanksgiving |   .1769625   .0329809     5.37   0.000     .1123211    .2416039
             THANKSGIVING_LAG_1 |   .0626619   .0329761     1.90   0.057      -.00197    .1272938
                      christmas |   .1591754   .0311707     5.11   0.000     .0980819    .2202689
                CHRISTMAS_LAG_1 |  -.0806795   .0344233    -2.34   0.019     -.148148    -.013211
                STATE_RESIDENTS |   8.75e-08   3.47e-09    25.23   0.000     8.07e-08    9.43e-08
                STATE_PRISONERS |  -7.30e-06   2.57e-07   -28.37   0.000    -7.81e-06   -6.80e-06
            STATE_PRISONER_RATE |   .0003989   .0000329    12.13   0.000     .0003344    .0004633
                        alabama |  -.2465564    .084825    -2.91   0.004    -.4128104   -.0803024
                         alaska |  -2.543436   .1018151   -24.98   0.000    -2.742989   -2.343882
                        arizona |  -.6429442   .0865158    -7.43   0.000    -.8125122   -.4733763
                       arkansas |   -.818303    .089779    -9.11   0.000    -.9942666   -.6423394
                       colorado |  -.9999912   .0882779   -11.33   0.000    -1.173013   -.8269697
                    connecticut |  -1.198366   .0888001   -13.50   0.000    -1.372411   -1.024321
                       delaware |  -2.424929   .0995415   -24.36   0.000    -2.620026   -2.229831
                  washington_dc |  -1.054117   .0942089   -11.19   0.000    -1.238763   -.8694712
                        florida |   .2036615   .0657035     3.10   0.002      .074885     .332438
                        georgia |   .0377605    .079312     0.48   0.634     -.117688    .1932091
                         hawaii |   -2.38388   .1015984   -23.46   0.000    -2.583009    -2.18475
                          idaho |  -2.580202   .1006868   -25.63   0.000    -2.777545    -2.38286
                       illinois |   .1062626   .0673312     1.58   0.115    -.0257041    .2382292
                        indiana |  -.6521383   .0815463    -8.00   0.000    -.8119661   -.4923105
                           iowa |  -2.301176   .0962359   -23.91   0.000    -2.489794   -2.112557
                         kansas |  -1.548414    .093331   -16.59   0.000    -1.731339   -1.365488
                       kentucky |  -.8386672    .086723    -9.67   0.000    -1.008641   -.6686933
                      louisiana |   .0394487   .0838735     0.47   0.638    -.1249404    .2038378
                          maine |     -2.873   .1048403   -27.40   0.000    -3.078483   -2.667517
                       maryland |  -.3466404   .0834487    -4.15   0.000    -.5101968   -.1830839
                  massachusetts |  -1.316125    .084094   -15.65   0.000    -1.480946   -1.151304
                       michigan |  -.1792389   .0757507    -2.37   0.018    -.3277076   -.0307702
                      minnesota |  -1.733601   .0903317   -19.19   0.000    -1.910648   -1.556554
                    mississippi |  -.4474252   .0886164    -5.05   0.000    -.6211101   -.2737403
                       missouri |  -.3305303   .0823436    -4.01   0.000    -.4919209   -.1691397
                        montana |  -2.298454    .100593   -22.85   0.000    -2.495612   -2.101295
                       nebraska |  -2.025354   .0969535   -20.89   0.000    -2.215379   -1.835329
                         nevada |  -1.179596   .0933826   -12.63   0.000    -1.362622   -.9965693
                  new_hampshire |  -3.074416   .1059573   -29.02   0.000    -3.282089   -2.866744
                     new_jersey |  -.7382442   .0770297    -9.58   0.000    -.8892197   -.5872687
                     new_mexico |  -1.088921   .0930907   -11.70   0.000    -1.271376   -.9064669
                       new_york |    -.08667   .0579171    -1.50   0.135    -.2001854    .0268453
                 north_carolina |  -.0937463    .079084    -1.19   0.236     -.248748    .0612554
                   north_dakota |  -3.599902   .1136443   -31.68   0.000    -3.822641   -3.377163
                           ohio |  -.5038957   .0700497    -7.19   0.000    -.6411906   -.3666008
                       oklahoma |  -.9589844   .0864763   -11.09   0.000    -1.128475    -.789494
                         oregon |  -1.321537   .0902421   -14.64   0.000    -1.498408   -1.144666
                   pennsylvania |  -.4388774   .0664159    -6.61   0.000    -.5690502   -.3087046
                   rhode_island |  -2.384441    .101639   -23.46   0.000     -2.58365   -2.185232
                 south_carolina |  -.5293928   .0865971    -6.11   0.000    -.6991199   -.3596656
                   south_dakota |  -2.749064   .1041148   -26.40   0.000    -2.953125   -2.545003
                      tennessee |  -.1882814   .0829281    -2.27   0.023    -.3508176   -.0257452
                          texas |   .4123111   .0597608     6.90   0.000     .2951822    .5294401
                           utah |  -1.840361   .0962597   -19.12   0.000    -2.029027   -1.651696
                       virginia |  -.3979736   .0802681    -4.96   0.000    -.5552961    -.240651
                        vermont |   -3.43482   .1118958   -30.70   0.000    -3.654131   -3.215508
                     washington |  -1.010182   .0840057   -12.03   0.000     -1.17483   -.8455342
                  west_virginia |  -1.637092   .0967528   -16.92   0.000    -1.826724    -1.44746
                      wisconsin |   -1.40902   .0877253   -16.06   0.000    -1.580958   -1.237081
                        wyoming |  -2.999585   .1057375   -28.37   0.000    -3.206827   -2.792343
                          _cons |   1.517704   .0948713    16.00   0.000      1.33176    1.703648
    ----------------------------+----------------------------------------------------------------
                          /ln_r |   7.527901          .                             .           .
                          /ln_s |   6.732611   .0109951                      6.711061    6.754161
    ----------------------------+----------------------------------------------------------------
                              r |   1859.199          .                             .           .
                              s |   839.3357   9.228616                      821.4415    857.6198
    ---------------------------------------------------------------------------------------------
    LR test vs. pooled: chibar2(01) = 0.00                 Prob >= chibar2 = 1.000
    convergence not achieved
    r(430);
     
    . estimates store random

    Comment


    • #3
      Moonki:
      the simplest reason why a model fails to converge is that its specification should be improved. The usual recipe is to re-start everything from scracth, adding one predictor at at time and see when the model starts suffering. This procedure is obviously time-consuming (and unavodably so), especially when you deal with monstre model such yours.
      Just out of cusriosity: assuming that the best scenario (convergence) will eventually come alive, how would you explain to your readers/reviewers/supervisor the role of each predictor?
      Kind regards,
      Carlo
      (Stata 19.0)

      Comment


      • #4
        Adding to what Carlo said, I would definitely get read of the variables alabama through Wyoming. You have already -xtset- your data with STATE as the panel variable, so these variables are already accounted for in that way. This may not be the reason your estimations are failing to converge, but including these variables is an incorrect specification in any case. In fact, it is very surprising that Stata did not drop those variables in the -fe- model because they should be collinear with the fixed effects themselves. That this didn't happen makes me wonder if there is also something wrong with your coding of these variables or of the panel variable REF_STATE. In the -re- model, the presence of these indicators makes it extremely difficult for Stata to estimate the REF_STATE level variation.

        But really, Carlo's post is on the right track: start with a minimal model and then add complexity one step at a time.

        Comment


        • #5
          One more thing. Looking at the values of r and s in the output of the -re- estimation, I see that the estimated distribution for the state-level variation in dispersion is a beta distribution that has a very narrow peak. This suggests that, at least after adjustment for all of these variables, there is in fact very little variation in dispersion among the states. The random-effect models all have difficulty converging when the variance at a level is very close to zero; which appears to be the case here. Now, including state-level dummies when state is the panel variable is pretty much asking to have no remaining variation at the state level. So the first, and most important step is to remove those variables from the model. If there is still difficulty getting convergence after you do that, then it suggests that there just isn't a lot of state-level variation in your data, and perhaps a pooled model makes more sense. But that, too, may be the result of adjusting for too many covariates, so that the covariates are already explaining the state-level variation.

          Again, Carlo's advice is superb. Start with a minimal model and add complexity one step at a time. Each time you add a new construct to the model, think carefully about whether it is really appropriate to do so. In particular, covariates that will collectively account for nearly all state-level variation will leave too little variation at the state-level for the analysis to converge. If you really can explain nearly all state-level variation with covariates, then you don't need a two-level model: the pooled analysis is appropriate in that case.

          Comment

          Working...
          X