Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • bold math

    Playing with bold in math expressions:

    Here is the code
    Code:
    \[
    M \ne \mathbf{M}
    \]
    ​Here is the result
    \[
    M \ne \mathbf{M}
    \]
    Last edited by Jeff Pitblado (StataCorp); 11 Sep 2014, 14:09.

  • #2

    \[ \frac{2}{3}+ \mathbf{\pi} \]
    \[ M \ne \mathbf{M} \]
    Last edited by eric_a_booth; 15 Jan 2017, 14:15.
    Eric A. Booth | Senior Director of Research | Far Harbor | Austin TX

    Comment


    • #3
      Just trying...

      \[
      \frac{2}{3}
      \]

      \[
      M \ne \mathbf{M}
      \]

      Code:
      \[
      M \ne \mathbf{M}
      \]
      Last edited by Stefano Grillini; 02 Aug 2018, 10:32.

      Comment


      • #4
        Just trying ...
        \[
        y = \alpha + X + \epsilon
        \]
        Last edited by Suresh Paul; 25 Mar 2019, 02:19.

        Comment


        • #5
          \[
          f(x)
          \]

          Comment


          • #6

            \[ \frac{2}{3}+ \mathbf{\pi} \]

            Comment


            • #7
              Just using this here as a sandbox:
              \[
              Y_{hjdt} = \lambda_h+\delta_M MM_{hjdt} +\delta_S S_{hjdt} +\delta_S_M (S_{hjdt} \times MM_{hjdt}) +\delta_X X_{hjdt} +\delta_S S_{hdt} + \delta_C C_{jdt} + \gamma_{dt} +\epsilon_{hjdt}
              \]
              Last edited by Elizabeth Meyers; 25 Apr 2021, 09:01.

              Comment


              • #8
                Okay, that does not seem to work.

                Comment


                • #9
                  Is this showing up? \(y_{it} = \mu_i + \theta y_{i,t-1} + \varepsilon_{it}\)

                  Comment


                  • #10
                    How about this? \[y_{it} = \mu_i + \theta y_{i,t-1} + \varepsilon_{it}\]

                    Comment


                    • #11

                      \[
                      z=\frac{1+2}{SE+SE}
                      \]
                      Last edited by Tom Ford; 16 Nov 2021, 04:11.

                      Comment


                      • #12

                        \[ \min\limits_{b}\sum_{n=1}^{n}\{vote_i-b_0-b_1^{T}win_i+b_2^{T}margin_i+b_3^{T}win_i\cdot margin_i+b_4^{T}class_i\}^{2}\textbf{K} \]
                        Last edited by Duccio Milani; 05 Dec 2021, 09:26.

                        Comment


                        • #13
                          Just trying...

                          Code:
                          \[
                          married_{ijk} = \alpha+\beta_1 sibsize_{jk}+\beta_2 \textbf{z}_{jk}+\beta_3 \textbf{x}_{ijk}+e_k+c_{jk}+\epsilon_{ijk}
                          \]
                          \[
                          married_{ijk} = \alpha+\beta_1 sibsize_{jk}+\beta_2 \textbf{z}_{jk}+\beta_3 \textbf{x}_{ijk}+e_k+c_{jk}+\epsilon_{ijk}
                          \]

                          Code:
                          \[
                          \Delta married_{ijk} = \beta_1 \Delta sibsize_{jk}+\beta_2 \Delta \textbf{z}_{jk}+\beta_3 \Delta \textbf{x}_{ijk}+c_{jk}+\Delta \epsilon_{ijk}
                          \]
                          \[
                          \Delta married_{ijk} = \beta_1 \Delta sibsize_{jk}+\beta_2 \Delta \textbf{z}_{jk}+\beta_3 \Delta \textbf{x}_{ijk}+c_{jk}+\Delta \epsilon_{ijk}
                          \]
                          Last edited by Owen Wallbanks; 28 Jan 2022, 04:34.

                          Comment


                          • #14

                            \[
                            \Delta lncaputil_t = u_t + \beta_t intv_t
                            \\
                            u_t = \alpha u_{t-1} + \epsilon_t
                            \\
                            \beta_t = \beta_{t-1} + v_t
                            \]
                            Last edited by Leon Faerber; 19 Mar 2022, 03:07.

                            Comment


                            • #15

                              It doesn't work in Preview so I am posting to see if it works \[ M \ne \mathbf{M} \]

                              Originally posted by eric_a_booth View Post
                              \[ \frac{2}{3}+ \mathbf{\pi} \]
                              \[ M \ne \mathbf{M} \]
                              \[ y_{ij} = \beta_{0j} + \beta_{1j} mo1 + \beta_{2j} mo2 + e_ij \\
                              \beta_{0j} = \beta_0 + u_{0j} \\
                              \beta_{1j} = \beta_1 + u_{1j} \\
                              \beta_{2j} = \beta_1 + u_{2j} \]
                              Last edited by Sam Rickman; 16 May 2022, 09:05.

                              Comment

                              Working...
                              X