Help with xxx
output:
. reghdfe logdisclsize electionyear closeelection size wins_ExecComp wins_leverage w
> ins_ContribReliance, absorb (ein year) cluster(state)
(dropped 550 singleton observations)
(MWFE estimator converged in 7 iterations)
HDFE Linear regression Number of obs = 29,506
Absorbing 2 HDFE groups F( 6, 49) = 2.57
Statistics robust to heteroskedasticity Prob > F = 0.0301
R-squared = 0.9857
Adj R-squared = 0.9827
Within R-sq. = 0.0010
Number of clusters (state) = 50 Root MSE = 0.5813
(Std. err. adjusted for 50 clusters in state)
------------------------------------------------------------------------------------
| Robust
logdisclsize | Coefficient std. err. t P>|t| [95% conf. interval]
-------------------+----------------------------------------------------------------
electionyear | .0172858 .0112746 1.53 0.132 -.0053714 .039943
closeelection | -.0052555 .0202606 -0.26 0.796 -.0459708 .0354597
size | .0274611 .0123293 2.23 0.031 .0026844 .0522378
wins_ExecComp | .0447626 .0661768 0.68 0.502 -.0882246 .1777498
wins_leverage | .0610303 .0284481 2.15 0.037 .0038618 .1181989
wins_ContribReli~e | .0122862 .03129 0.39 0.696 -.0505935 .0751659
_cons | 7.541963 .1793516 42.05 0.000 7.181543 7.902384
------------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
ein | 5085 0 5085 |
year | 9 1 8 |
-----------------------------------------------------+
Code:
* Example generated by -dataex-. For more info, type help dataex clear input float(logdisclsize electionyear landslide) long ein float year str16 state 10.84887 0 0 10248780 2011 "ME" 10.694057 0 0 10248780 2013 "ME" 10.795568 1 0 10248780 2014 "ME" 10.870756 0 0 10248780 2015 "ME" 11.00408 0 0 10248780 2016 "ME" 10.983002 1 0 10248780 2018 "ME" 11.102217 0 0 10248780 2019 "ME" 10.12475 0 0 10270690 2013 "ME" 11.652548 0 0 10270690 2015 "ME" 11.8213 0 0 10270690 2016 "ME" 12.106854 0 0 10270690 2017 "ME" 12.061775 1 0 10270690 2018 "ME" 12.056853 0 0 10270690 2019 "ME" 10.518646 0 0 10317679 2012 "ME" 10.63246 0 0 10317679 2013 "ME" 10.839287 1 0 10317679 2014 "ME" 10.85532 0 0 10317679 2015 "ME" 10.849357 0 0 10317679 2016 "ME" 10.888838 0 0 10317679 2017 "ME" 11.097547 1 0 10317679 2018 "ME" end
Code:
. reghdfe logdisclsize electionyear closeelection size wins_ExecComp wins_leverage w > ins_ContribReliance, absorb (ein year) cluster(state) (dropped 550 singleton observations) (MWFE estimator converged in 7 iterations) HDFE Linear regression Number of obs = 29,506 Absorbing 2 HDFE groups F( 6, 49) = 2.57 Statistics robust to heteroskedasticity Prob > F = 0.0301 R-squared = 0.9857 Adj R-squared = 0.9827 Within R-sq. = 0.0010 Number of clusters (state) = 50 Root MSE = 0.5813 (Std. err. adjusted for 50 clusters in state) ------------------------------------------------------------------------------------ | Robust logdisclsize | Coefficient std. err. t P>|t| [95% conf. interval] -------------------+---------------------------------------------------------------- electionyear | .0172858 .0112746 1.53 0.132 -.0053714 .039943 closeelection | -.0052555 .0202606 -0.26 0.796 -.0459708 .0354597 size | .0274611 .0123293 2.23 0.031 .0026844 .0522378 wins_ExecComp | .0447626 .0661768 0.68 0.502 -.0882246 .1777498 wins_leverage | .0610303 .0284481 2.15 0.037 .0038618 .1181989 wins_ContribReli~e | .0122862 .03129 0.39 0.696 -.0505935 .0751659 _cons | 7.541963 .1793516 42.05 0.000 7.181543 7.902384 ------------------------------------------------------------------------------------ Absorbed degrees of freedom: -----------------------------------------------------+ Absorbed FE | Categories - Redundant = Num. Coefs | -------------+---------------------------------------| ein | 5085 0 5085 | year | 9 1 8 | -----------------------------------------------------+
> ins_ContribReliance, absorb (ein year) cluster(state)
(dropped 550 singleton observations)
(MWFE estimator converged in 7 iterations)
HDFE Linear regression Number of obs = 29,506
Absorbing 2 HDFE groups F( 6, 49) = 2.57
Statistics robust to heteroskedasticity Prob > F = 0.0301
R-squared = 0.9857
Adj R-squared = 0.9827
Within R-sq. = 0.0010
Number of clusters (state) = 50 Root MSE = 0.5813
(Std. err. adjusted for 50 clusters in state)
------------------------------------------------------------------------------------
| Robust
logdisclsize | Coefficient std. err. t P>|t| [95% conf. interval]
-------------------+----------------------------------------------------------------
electionyear | .0172858 .0112746 1.53 0.132 -.0053714 .039943
closeelection | -.0052555 .0202606 -0.26 0.796 -.0459708 .0354597
size | .0274611 .0123293 2.23 0.031 .0026844 .0522378
wins_ExecComp | .0447626 .0661768 0.68 0.502 -.0882246 .1777498
wins_leverage | .0610303 .0284481 2.15 0.037 .0038618 .1181989
wins_ContribReli~e | .0122862 .03129 0.39 0.696 -.0505935 .0751659
_cons | 7.541963 .1793516 42.05 0.000 7.181543 7.902384
------------------------------------------------------------------------------------
Absorbed degrees of freedom:
-----------------------------------------------------+
Absorbed FE | Categories - Redundant = Num. Coefs |
-------------+---------------------------------------|
ein | 5085 0 5085 |
year | 9 1 8 |
-----------------------------------------------------+