Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Testing Logit models (pooled, panel FE, panel RE)

    Dear all,

    I am using longitudinal data from the SHARE survey (Survey of Health, Ageing and Retirement in Europe) to run a model on the covariates of transition from work into retirement (for a sample aged 50yo and over). Covariates include: one's risk of poverty in wave t-1, education, sex, age groups, equivalised household size, self-reported health status, work type, marital status, and extra working household member.

    My co-authors and I thought it best to estimate a binary choice model like Logit model instead of a linear probability model. We start with a simple reg, estat hettest (heteroskedasticity confirmed), followed by logit ..., vce(cl mergeid).

    Next, we estimate conditional xtlogit ..., fe and xtlogit ..., re, followed by hausman fe re. As p-value is zero, the panel Logit with FE would be more appropriate. Note that all models include wave- and country-fixed effects. Results and dataex follow after the questions.

    My questions are:
    1. As hausman fe re does not allow for robust nor clustered S.E., I am afraid that the results might not be precise in my case. Being this an unbalanced panel, I cannot easily implement the "robust Hausman test" proposed by Cameron & Trivedi. What would you recommend? For instance, coefficients of pov_risk_t_1, a dependent var of interest, change significantly from one model to another.
    2. In the xtlogit ..., fe results, educ and male variables are omitted, along with all country-FE. In principle, I understand why this happens, but I am puzzled about not being able to include country-FE with individual FE. Also, if I stick to xtlogit ..., fe, I would end up with 13,000 obs (versus 43,000 with xtlogit ..., re). How can I take this constraint into consideration?
    If you need any further info, please let me know. It is the first time I am dealing with non-linear models and I am struggling to put theory into practice. Any comments and/or feedback are very much welcome!

    Code:
    global cov_pov_risk2 pov_risk_t_1 educ male i.age_grp hhsize_eqh_sr sphus_poor i.work_type i.marital_status hhmemb_work 
    
    *** OLS
    reg trans $cov_pov_risk2 i.wave i.country if trans==0 | trans==1
    rvfplot
    estat hettest //p-value=0, can reject null of homoskedasticity
    
    reg trans $cov_pov_risk2 i.wave i.country if trans==0 | trans==1, vce(cl mergeid)
    eststo ols_trans_all
    capture drop insample
    gen insample=1 if e(sample)==1
    
    *** POOLED LOGIT
    logit trans $cov_pov_risk2 i.wave i.country if insample==1, vce(cl mergeid)
    margins, dydx($cov_pov_risk2) post
    outreg2 using "$result/transition_25-04-24.doc", replace ctitle(Pooled OLS) keep($cov_pov_risk2) label dec(3) pdec(3) addtext(Wave FE, YES, Country FE, YES)
    
    *** HAUSMAN TEST
    
    ** PANEL LOGIT, FE
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
    est sto fe
    
    ** PANEL LOGIT, RE
    xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, re
    est sto re
    
    hausman fe re //sigmamore option not allowed (?)
    Code:
                     ---- Coefficients ----
                 |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                 |       fe           re         Difference       Std. err.
    -------------+----------------------------------------------------------------
    pov_risk_t_1 |   -.6016172    -.1795393       -.4220778        .2444998
         age_grp |
              2  |   -.7621384     1.532987       -2.295125        .5458784
              3  |    .7511475     3.644596       -2.893449        .7114418
              4  |    2.048137     5.536591       -3.488453         .850413
              5  |    .2238864     5.504902       -5.281015        .9802493
              6  |   -2.020909     5.611854       -7.632763        1.162086
    hhsize_eqh~r |   -1.527002    -.6933263       -.8336755        .7235039
      sphus_poor |   -.0086558     .2115868       -.2202427        .2288058
       work_type |
              2  |   -.7272602    -.0266944       -.7005657        .5069954
              3  |   -.1223119    -.4053891        .2830772        .6502483
    marital_st~s |
              4  |    .8187897     .5042493        .3145404        2.837579
              5  |    1.590961     .6787202        .9122412        .7105594
     hhmemb_work |    7.846142     3.672941        4.173201        .4753171
            wave |
              4  |    4.198946     .3118012        3.887145        .5569936
              5  |    7.219535    -.5716207        7.791155        .6539124
              6  |    9.880225    -.7593481        10.63957        .7250568
              7  |    12.43963    -.7975258        13.23716        .7884817
              8  |    15.73511    -.6655215        16.40063        .8880205
    ------------------------------------------------------------------------------
                            b = Consistent under H0 and Ha; obtained from xtlogit.
             B = Inconsistent under Ha, efficient under H0; obtained from xtlogit.
    
    Test of H0: Difference in coefficients not systematic
    
       chi2(18) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                = 633.49
    Prob > chi2 = 0.0000
    Code:
    . xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, fe
    note: multiple positive outcomes within groups encountered.
    note: 17,818 groups (30,342 obs) omitted because of all positive or
          all negative outcomes.
    note: educ omitted because of no within-group variance.
    note: male omitted because of no within-group variance.
    note: 12.country omitted because of no within-group variance.
    note: 13.country omitted because of no within-group variance.
    note: 14.country omitted because of no within-group variance.
    note: 15.country omitted because of no within-group variance.
    note: 16.country omitted because of no within-group variance.
    note: 17.country omitted because of no within-group variance.
    note: 18.country omitted because of no within-group variance.
    note: 19.country omitted because of no within-group variance.
    note: 23.country omitted because of no within-group variance.
    note: 28.country omitted because of no within-group variance.
    note: 29.country omitted because of no within-group variance.
    note: 31.country omitted because of no within-group variance.
    note: 32.country omitted because of no within-group variance.
    note: 33.country omitted because of no within-group variance.
    note: 34.country omitted because of no within-group variance.
    note: 35.country omitted because of no within-group variance.
    note: 47.country omitted because of no within-group variance.
    note: 48.country omitted because of no within-group variance.
    note: 51.country omitted because of no within-group variance.
    note: 53.country omitted because of no within-group variance.
    note: 55.country omitted because of no within-group variance.
    note: 57.country omitted because of no within-group variance.
    note: 59.country omitted because of no within-group variance.
    note: 61.country omitted because of no within-group variance.
    note: 63.country omitted because of no within-group variance.
    
    Iteration 0:  Log likelihood = -884.53166  
    Iteration 1:  Log likelihood = -457.83119  
    Iteration 2:  Log likelihood = -368.83669  
    Iteration 3:  Log likelihood = -365.37058  
    Iteration 4:  Log likelihood = -365.34699  
    Iteration 5:  Log likelihood = -365.34698  
    
    Conditional fixed-effects logistic regression       Number of obs    =  12,985
    Group variable: panel                               Number of groups =   4,637
    
                                                        Obs per group:
                                                                     min =       2
                                                                     avg =     2.8
                                                                     max =       6
    
                                                        LR chi2(18)      = 8344.49
    Log likelihood = -365.34698                         Prob > chi2      =  0.0000
    
    --------------------------------------------------------------------------------------------
                         trans | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ---------------------------+----------------------------------------------------------------
                  pov_risk_t_1 |  -.6016172   .2503352    -2.40   0.016    -1.092265   -.1109691
                          educ |          0  (omitted)
                          male |          0  (omitted)
                               |
                       age_grp |
                      55-59yo  |  -.7621384   .5653121    -1.35   0.178     -1.87013    .3458531
                      60-64yo  |   .7511475   .7270053     1.03   0.302    -.6737567    2.176052
                      65-69yo  |   2.048137   .8667529     2.36   0.018     .3493329    3.746942
                      70-74yo  |   .2238864   .9984175     0.22   0.823    -1.732976    2.180749
                        75+yo  |  -2.020909   1.181374    -1.71   0.087     -4.33636    .2945416
                               |
                 hhsize_eqh_sr |  -1.527002   .7280251    -2.10   0.036    -2.953905   -.1000989
                    sphus_poor |  -.0086558    .233234    -0.04   0.970    -.4657862    .4484745
                               |
                     work_type |
    2. Public sector employee  |  -.7272602   .5089185    -1.43   0.153    -1.724722    .2702018
             3. Self-employed  |  -.1223119    .652457    -0.19   0.851    -1.401104     1.15648
                               |
                marital_status |
             2. Never married  |   .8187897   2.838588     0.29   0.773    -4.744741     6.38232
          3. Divorced/widowed  |   1.590961    .712656     2.23   0.026     .1941812    2.987742
                               |
                   hhmemb_work |   7.846142   .4802585    16.34   0.000     6.904853    8.787431
                               |
                          wave |
             Wave 4 (2011/12)  |   4.198946   .5628121     7.46   0.000     3.095854    5.302037
                Wave 5 (2013)  |   7.219535   .6587072    10.96   0.000     5.928492    8.510577
                Wave 6 (2015)  |   9.880225   .7291923    13.55   0.000     8.451035    11.30942
             Wave 7 (2017/18)  |   12.43963   .7921748    15.70   0.000       10.887    13.99226
             Wave 8 (2019/20)  |   15.73511    .891713    17.65   0.000     13.98739    17.48284
                               |
                       country |
                      Germany  |          0  (omitted)
                       Sweden  |          0  (omitted)
                  Netherlands  |          0  (omitted)
                        Spain  |          0  (omitted)
                        Italy  |          0  (omitted)
                       France  |          0  (omitted)
                      Denmark  |          0  (omitted)
                       Greece  |          0  (omitted)
                      Belgium  |          0  (omitted)
               Czech Republic  |          0  (omitted)
                       Poland  |          0  (omitted)
                   Luxembourg  |          0  (omitted)
                      Hungary  |          0  (empty)
                     Portugal  |          0  (empty)
                     Slovenia  |          0  (omitted)
                      Estonia  |          0  (omitted)
                      Croatia  |          0  (omitted)
                    Lithuania  |          0  (empty)
                     Bulgaria  |          0  (empty)
                       Cyprus  |          0  (empty)
                      Finland  |          0  (empty)
                       Latvia  |          0  (empty)
                        Malta  |          0  (empty)
                      Romania  |          0  (empty)
                     Slovakia  |          0  (empty)
    --------------------------------------------------------------------------------------------
    Code:
    . xtlogit trans $cov_pov_risk2 i.wave i.country if insample==1, re //LR test of rho=0: chibar2(01
    > ) = 2.27
    note: 59.country != 0 predicts failure perfectly;
          59.country omitted and 18 obs not used.
    
    
    Fitting comparison model:
    
    Iteration 0:  Log likelihood = -21005.955  
    Iteration 1:  Log likelihood = -12053.908  
    Iteration 2:  Log likelihood = -10779.721  
    Iteration 3:  Log likelihood = -10584.603  
    Iteration 4:  Log likelihood = -10579.394  
    Iteration 5:  Log likelihood = -10579.358  
    Iteration 6:  Log likelihood = -10579.358  
    
    Fitting full model:
    
    tau =  0.0    Log likelihood = -10579.358
    tau =  0.1    Log likelihood = -10580.232
    
    Iteration 0:  Log likelihood = -10580.232  
    Iteration 1:  Log likelihood = -10578.224  
    Iteration 2:  Log likelihood = -10578.222  
    Iteration 3:  Log likelihood = -10578.222  
    
    Random-effects logistic regression                  Number of obs    =  43,309
    Group variable: panel                               Number of groups =  22,437
    
    Random effects u_i ~ Gaussian                       Obs per group:
                                                                     min =       1
                                                                     avg =     1.9
                                                                     max =       6
    
    Integration method: mvaghermite                     Integration pts. =      12
    
                                                        Wald chi2(44)    = 3530.49
    Log likelihood = -10578.222                         Prob > chi2      =  0.0000
    
    --------------------------------------------------------------------------------------------
                         trans | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
    ---------------------------+----------------------------------------------------------------
                  pov_risk_t_1 |  -.1795393   .0537363    -3.34   0.001    -.2848605   -.0742182
                          educ |   -.045703   .0050548    -9.04   0.000    -.0556102   -.0357958
                          male |   .0069455   .0383919     0.18   0.856    -.0683012    .0821921
                               |
                       age_grp |
                      55-59yo  |   1.532987   .1469509    10.43   0.000     1.244968    1.821005
                      60-64yo  |   3.644596   .1496238    24.36   0.000     3.351339    3.937853
                      65-69yo  |   5.536591   .1675063    33.05   0.000     5.208284    5.864897
                      70-74yo  |   5.504902   .1896016    29.03   0.000     5.133289    5.876514
                        75+yo  |   5.611854   .2126046    26.40   0.000     5.195157    6.028551
                               |
                 hhsize_eqh_sr |  -.6933263   .0810102    -8.56   0.000    -.8521035   -.5345491
                    sphus_poor |   .2115868   .0452328     4.68   0.000     .1229321    .3002416
                               |
                     work_type |
    2. Public sector employee  |  -.0266944   .0442009    -0.60   0.546    -.1133267    .0599378
             3. Self-employed  |  -.4053891   .0536401    -7.56   0.000    -.5105218   -.3002564
                               |
                marital_status |
             2. Never married  |   .5042493   .0756994     6.66   0.000     .3558811    .6526175
          3. Divorced/widowed  |   .6787202   .0546258    12.42   0.000     .5716556    .7857848
                               |
                   hhmemb_work |   3.672941   .0687164    53.45   0.000     3.538259    3.807623
                               |
                          wave |
             Wave 4 (2011/12)  |   .3118012   .0807195     3.86   0.000     .1535939    .4700084
                Wave 5 (2013)  |  -.5716207   .0793329    -7.21   0.000    -.7271103   -.4161311
                Wave 6 (2015)  |  -.7593481   .0775501    -9.79   0.000    -.9113435   -.6073526
             Wave 7 (2017/18)  |  -.7975258   .0764036   -10.44   0.000    -.9472741   -.6477775
             Wave 8 (2019/20)  |  -.6655215   .0810649    -8.21   0.000    -.8244058   -.5066372
                               |
                       country |
                      Germany  |  -1.168965     .10466   -11.17   0.000    -1.374095    -.963835
                       Sweden  |  -1.480859   .1034137   -14.32   0.000    -1.683546   -1.278172
                  Netherlands  |  -1.273757   .1367407    -9.32   0.000    -1.541764    -1.00575
                        Spain  |  -1.186293   .1140347   -10.40   0.000    -1.409797   -.9627893
                        Italy  |  -.9683722   .1125943    -8.60   0.000    -1.189053   -.7476915
                       France  |  -.4131417   .1014051    -4.07   0.000     -.611892   -.2143913
                      Denmark  |  -1.683413   .1049886   -16.03   0.000    -1.889186   -1.477639
                       Greece  |  -1.922236   .1445765   -13.30   0.000    -2.205601   -1.638871
                      Belgium  |  -.5099378   .0995423    -5.12   0.000    -.7050371   -.3148385
               Czech Republic  |   .0235277   .1025167     0.23   0.818    -.1774014    .2244568
                       Poland  |  -.4236044   .1582189    -2.68   0.007    -.7337077   -.1135011
                   Luxembourg  |   .8005673   .1579398     5.07   0.000     .4910109    1.110124
                      Hungary  |  -.2384578   .3374907    -0.71   0.480    -.8999274    .4230119
                     Portugal  |  -1.744507   .3401498    -5.13   0.000    -2.411188   -1.077825
                     Slovenia  |   .2154525   .1305904     1.65   0.099    -.0404999    .4714049
                      Estonia  |  -2.091223   .1080082   -19.36   0.000    -2.302915   -1.879531
                      Croatia  |  -.9198809   .2152789    -4.27   0.000     -1.34182   -.4979419
                    Lithuania  |  -1.531874   .3288001    -4.66   0.000     -2.17631   -.8874374
                     Bulgaria  |  -1.750336   .5283161    -3.31   0.001    -2.785816    -.714855
                       Cyprus  |     -1.822   .8435301    -2.16   0.031    -3.475289   -.1687116
                      Finland  |  -1.361717   .4022767    -3.39   0.001    -2.150165   -.5732691
                       Latvia  |  -2.491216   .6616125    -3.77   0.000    -3.787953    -1.19448
                        Malta  |          0  (empty)
                      Romania  |  -1.484375   .6202134    -2.39   0.017    -2.699971   -.2687794
                     Slovakia  |   -1.40925   .3980663    -3.54   0.000    -2.189446   -.6290545
                               |
                         _cons |  -2.556813   .2192327   -11.66   0.000    -2.986501   -2.127124
    ---------------------------+----------------------------------------------------------------
                      /lnsig2u |   -2.16503   .7041196                     -3.545079   -.7849811
    ---------------------------+----------------------------------------------------------------
                       sigma_u |   .3387425   .1192576                       .169901    .6753727
                           rho |   .0337032   .0229313                       .008698    .1217642
    --------------------------------------------------------------------------------------------
    LR test of rho=0: chibar2(01) = 2.27                   Prob >= chibar2 = 0.066
    Code:
    . hausman fe re //sigmamore option not allowed
    
                     ---- Coefficients ----
                 |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                 |       fe           re         Difference       Std. err.
    -------------+----------------------------------------------------------------
    pov_risk_t_1 |   -.6016172    -.1795393       -.4220778        .2444998
         age_grp |
              2  |   -.7621384     1.532987       -2.295125        .5458784
              3  |    .7511475     3.644596       -2.893449        .7114418
              4  |    2.048137     5.536591       -3.488453         .850413
              5  |    .2238864     5.504902       -5.281015        .9802493
              6  |   -2.020909     5.611854       -7.632763        1.162086
    hhsize_eqh~r |   -1.527002    -.6933263       -.8336755        .7235039
      sphus_poor |   -.0086558     .2115868       -.2202427        .2288058
       work_type |
              2  |   -.7272602    -.0266944       -.7005657        .5069954
              3  |   -.1223119    -.4053891        .2830772        .6502483
    marital_st~s |
              4  |    .8187897     .5042493        .3145404        2.837579
              5  |    1.590961     .6787202        .9122412        .7105594
     hhmemb_work |    7.846142     3.672941        4.173201        .4753171
            wave |
              4  |    4.198946     .3118012        3.887145        .5569936
              5  |    7.219535    -.5716207        7.791155        .6539124
              6  |    9.880225    -.7593481        10.63957        .7250568
              7  |    12.43963    -.7975258        13.23716        .7884817
              8  |    15.73511    -.6655215        16.40063        .8880205
    ------------------------------------------------------------------------------
                            b = Consistent under H0 and Ha; obtained from xtlogit.
             B = Inconsistent under Ha, efficient under H0; obtained from xtlogit.
    
    Test of H0: Difference in coefficients not systematic
    
       chi2(18) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                = 633.49
    Prob > chi2 = 0.0000
    Code:
    * Example generated by -dataex-. For more info, type help dataex
    clear
    input float(trans pov_risk_t_1 educ) byte male float(age_grp hhsize_eqh_sr sphus_poor work_type) byte marital_status float hhmemb_work str12 mergeid
    . .  . 1 1 1.4142135 0 . 1 0 "AT-000327-01"
    1 0  . 1 1 1.4142135 1 2 1 1 "AT-000327-01"
    0 .  3 0 1 1.4142135 0 1 1 1 "AT-000327-02"
    . .  3 0 2         1 0 3 5 0 "AT-000674-01"
    1 1  3 0 3         1 0 3 5 0 "AT-000674-01"
    . 0  3 0 3         1 0 . 5 0 "AT-000674-01"
    . . 15 0 5         1 0 . 4 0 "AT-001215-01"
    . 0 15 0 5         1 1 . 4 0 "AT-001215-01"
    . 0 15 0 6         1 1 . 4 0 "AT-001215-01"
    . 0 15 0 6         1 1 . 4 0 "AT-001215-01"
    . 0 15 0 6         1 1 . 4 0 "AT-001215-01"
    . . 11 0 2 1.4142135 0 . 1 0 "AT-001492-01"
    . 0 11 0 3 1.4142135 0 . 1 0 "AT-001492-01"
    . 0 11 0 3 1.4142135 0 . 1 1 "AT-001492-01"
    . 0 11 0 4 1.4142135 0 . 1 0 "AT-001492-01"
    . 0 11 0 4 1.4142135 0 . 1 0 "AT-001492-01"
    . . 13 1 2 1.4142135 0 1 1 0 "AT-001492-02"
    0 0 13 1 3 1.4142135 0 1 1 0 "AT-001492-02"
    1 0 13 1 3 1.4142135 0 1 1 1 "AT-001492-02"
    . 0 13 1 4 1.4142135 0 . 1 0 "AT-001492-02"
    . 0 13 1 4 1.4142135 0 . 1 0 "AT-001492-02"
    . .  . 0 3 1.4142135 0 . 1 0 "AT-001816-01"
    . .  8 1 2 1.4142135 0 . 1 0 "AT-001816-02"
    0 0  8 1 2 1.7320508 0 1 1 0 "AT-001816-02"
    . .  . 0 6 1.4142135 0 1 1 0 "AT-001881-01"
    . 0  . 0 6 1.4142135 1 . 1 0 "AT-001881-01"
    . 0  . 0 6 1.4142135 1 . 5 0 "AT-001881-01"
    . 1  . 0 6 1.4142135 0 . 5 0 "AT-001881-01"
    . 0  . 0 6 1.4142135 1 . 5 0 "AT-001881-01"
    . .  . 1 6 1.4142135 1 . 1 0 "AT-001881-02"
    . 0  . 1 6 1.4142135 1 . 1 0 "AT-001881-02"
    . 0  . 1 6 1.7320508 1 . 1 0 "AT-001881-02"
    . 1  . 1 6 1.7320508 0 . 1 0 "AT-001881-02"
    . 0  . 1 6 1.7320508 0 . 1 0 "AT-001881-02"
    . . 10 0 5   2.44949 1 . 5 0 "AT-002132-01"
    . 1 10 0 5         1 1 . 5 0 "AT-002132-01"
    . . 20 1 2 1.7320508 1 . 1 0 "AT-002136-01"
    . 0 20 1 3 1.7320508 0 . 1 0 "AT-002136-01"
    . 0 20 1 3 1.7320508 1 . 1 0 "AT-002136-01"
    . 0 20 1 4 1.4142135 1 . 1 0 "AT-002136-01"
    . 0 20 1 4 1.4142135 1 . 1 0 "AT-002136-01"
    . . 14 0 2 1.7320508 0 . 1 0 "AT-002136-03"
    . 0 14 0 3 1.7320508 0 . 1 0 "AT-002136-03"
    . 0 14 0 3 1.7320508 0 . 1 0 "AT-002136-03"
    . 0 14 0 3 1.4142135 0 . 1 0 "AT-002136-03"
    . 0 14 0 4 1.4142135 0 . 1 0 "AT-002136-03"
    . .  . 1 6   2.44949 1 . 1 0 "AT-002180-02"
    . 1  . 1 6   2.44949 1 . 1 0 "AT-002180-02"
    . .  2 0 5   2.44949 1 . 1 0 "AT-002180-03"
    . 1  2 0 5   2.44949 1 . 1 0 "AT-002180-03"
    . 1  2 0 6  2.236068 1 . 5 0 "AT-002180-03"
    . .  . 1 5 1.4142135 1 . 1 0 "AT-002355-01"
    . .  . 0 5 1.4142135 1 . 1 0 "AT-002355-02"
    . .  . 0 4 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 5 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 5 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 5 1.4142135 1 . 1 0 "AT-002525-01"
    . 0  . 0 6 1.4142135 1 . 1 0 "AT-002525-01"
    . .  . 1 4 1.4142135 1 . 1 0 "AT-002525-02"
    . 0  . 1 5 1.4142135 1 . 1 0 "AT-002525-02"
    . 0  . 1 5 1.4142135 1 . 1 0 "AT-002525-02"
    . 0  . 1 6 1.4142135 1 . 1 0 "AT-002525-02"
    . .  8 0 6 1.4142135 0 . 1 0 "AT-002573-01"
    . 0  8 0 6 1.4142135 0 . 1 0 "AT-002573-01"
    . .  8 1 4 1.4142135 0 . 1 0 "AT-002573-02"
    . 0  8 1 5 1.4142135 0 . 1 0 "AT-002573-02"
    . . 23 0 3         1 0 1 1 0 "AT-002800-01"
    1 0 23 0 3         1 0 1 1 0 "AT-002800-01"
    . 0 23 0 3         1 0 1 1 0 "AT-002800-01"
    . 0 23 0 4         1 1 . 1 0 "AT-002800-01"
    . .  8 0 6 1.4142135 0 . 5 0 "AT-002965-02"
    . 1  8 0 6 1.4142135 1 . 5 0 "AT-002965-02"
    . 1  8 0 6 1.4142135 1 . 5 0 "AT-002965-02"
    . 1  8 0 6 1.4142135 1 . 5 0 "AT-002965-02"
    . .  2 1 5 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . 0  2 1 6 1.4142135 0 . 1 0 "AT-003194-01"
    . .  2 0 5 1.4142135 1 . 1 0 "AT-003194-02"
    . .  3 0 1 1.4142135 0 1 1 0 "AT-003683-01"
    . .  3 1 1 1.4142135 0 1 1 0 "AT-003683-02"
    . .  8 1 1 1.4142135 1 1 1 0 "AT-004234-01"
    . 0  8 1 2 1.4142135 1 . 1 0 "AT-004234-01"
    . 0  8 1 3 1.4142135 1 . 1 0 "AT-004234-01"
    . .  8 0 1 1.4142135 0 1 1 0 "AT-004234-02"
    0 0  8 0 2 1.4142135 1 1 1 0 "AT-004234-02"
    . .  8 0 4         1 0 1 4 0 "AT-004379-01"
    . 0  8 0 5         1 0 . 4 0 "AT-004379-01"
    . 1  8 0 6         1 1 . 4 0 "AT-004379-01"
    . .  8 1 6 1.4142135 1 . 1 0 "AT-004855-01"
    . 1  8 1 6 1.4142135 1 . 1 0 "AT-004855-01"
    . .  7 0 5 1.4142135 0 . 1 0 "AT-004855-02"
    . 1  7 0 5 1.4142135 1 . 1 0 "AT-004855-02"
    . 0  7 0 6 1.7320508 0 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.7320508 1 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.7320508 1 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.7320508 1 . 5 0 "AT-004855-02"
    . 1  7 0 6 1.4142135 1 . 5 0 "AT-004855-02"
    . .  3 1 4         1 0 . 5 0 "AT-004974-01"
    end
    label values trans trans
    label def trans 0 "0. No transition", modify
    label def trans 1 "1. Retirement", modify
    label values pov_risk_t_1 pov_risk
    label def pov_risk 0 "not in risk of poverty", modify
    label def pov_risk 1 "in risk of poverty", modify
    label values educ eduyears_mod
    label values male gender
    label def gender 0 "Female", modify
    label def gender 1 "Male", modify
    label values age_grp age_grp
    label def age_grp 1 "50-54yo", modify
    label def age_grp 2 "55-59yo", modify
    label def age_grp 3 "60-64yo", modify
    label def age_grp 4 "65-69yo", modify
    label def age_grp 5 "70-74yo", modify
    label def age_grp 6 "75+yo", modify
    label values work_type work_type_val
    label def work_type_val 1 "1. Private sector employee", modify
    label def work_type_val 2 "2. Public sector employee", modify
    label def work_type_val 3 "3. Self-employed", modify
    label values marital_status marital_status
    label def marital_status 1 "1. Married/in partnership", modify
    label def marital_status 4 "2. Never married", modify
    label def marital_status 5 "3. Divorced/widowed", modify



  • #2
    Are you sure that you want to place you topic into the Forum "Sandbox"? If not you are advised to read the Statalist's FAQ (especially #0 and #2) before posting.

    Add on: Please ignore my comment -- I just noticed that you posted you topic also in the General forum!
    Last edited by Dirk Enzmann; 29 Apr 2024, 12:04.

    Comment

    Working...
    X