Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Test

    Hi!
    I want to estimate a Difference in Difference with GMM estimations using the command xtabond2.
    I have two questions: Is there any good reason why GMM estimations are problematic for a DID context?
    Second: Is the following code from below correct for such an estimation? The omitted constant as well as the Hansen and Sargan lead me to believe that there must be some error.

    N=849, n=283, T=3years
    dependent variables: con (Con. Vote Share)
    Independent variable: i.treat##i.post (DID estimator)
    Control variables: lagvote (lagged con. vote share), population, const (constituency fixed effects)

    Code:
    . xtsum treat post const lagvote population
    
    Variable         |      Mean   Std. dev.       Min        Max |    Observations
    -----------------+--------------------------------------------+----------------
    treat    overall |  .1107185   .3139682          0          1 |     N =     849
             between |             .1572736          0   .3333333 |     n =     283
             within  |             .2718444  -.2226148   .7773852 |     T =       3
                     |                                            |
    post     overall |  .3333333   .4716824          0          1 |     N =     849
             between |                    0   .3333333   .3333333 |     n =     283
             within  |             .4716824          0          1 |     T =       3
                     |                                            |
    const    overall |  273.7244   156.8698          2        531 |     N =     849
             between |             157.0551          2        531 |     n =     283
             within  |                    0   273.7244   273.7244 |     T =       3
                     |                                            |
    lagvote  overall |  42.08616    12.7877    6.63736   69.91752 |     N =     849
             between |             11.94309   8.288684   62.84266 |     n =     283
             within  |             4.606984   28.43678   55.31837 |     T =       3
                     |                                            |
    popula~n overall |  11.50537   .1096006    11.1961   11.87054 |     N =     849
             between |             .1090479   11.19899   11.86021 |     n =     283
             within  |             .0122013   11.46214    11.5484 |     T =       3
    Code:
    . xtabond2 con i.treat##i.post i.const lagvote population age_50 if conwin == 1, gmm(L.con) iv(i.const i.post la
    > gvote i.treat) robust orthogonal small
    
    
    Dynamic panel-data estimation, one-step system GMM
    ------------------------------------------------------------------------------
    Group variable: const                           Number of obs      =       510
    Time variable : year                            Number of groups   =       170
    Number of instruments = 173                     Obs per group: min =         3
    F(174, 169)   =      0.09                                      avg =      3.00
    Prob > F      =     1.000                                      max =         3
    ---------------------------------------------------------------------------------------------------------
                                            |               Robust
                                        con | Coefficient  std. err.      t    P>|t|     [95% conf. interval]
    ----------------------------------------+----------------------------------------------------------------
                                    1.treat |   2.443444   .8396104     2.91   0.004     .7859689     4.10092
                                     1.post |   .5576694   1.377677     0.40   0.686    -2.162004    3.277343
                                    lagvote |   .8216299   .1354844     6.06   0.000     .5541701     1.08909
                                 population |   1.936205   .9694733     2.00   0.047     .0223673    3.850042
                                     age_50 |  -.7147711    .317661    -2.25   0.026    -1.341866   -.0876763
                                      _cons |          0  (omitted)
    ---------------------------------------------------------------------------------------------------------
    
    Arellano-Bond test for AR(1) in first differences: z =      .  Pr > z =      .
    Arellano-Bond test for AR(2) in first differences: z =      .  Pr > z =      .
    ------------------------------------------------------------------------------
    Sargan test of overid. restrictions: chi2(-2)   =   0.00  Prob > chi2 =      .
      (Not robust, but not weakened by many instruments.)
    Hansen test of overid. restrictions: chi2(-2)   =37205.46 Prob > chi2 =      .
      (Robust, but weakened by many instruments.)
    In the results I omitted the constituency estimations for a better overview.
    Last edited by Johannes Reinhold Lattmann; 06 Nov 2023, 06:41.
Working...
X