I will apologize in advance if the subject matter in my question is inappropriate. This is my first attempted post, though I have learned enormously from the posts of others and responses to them.
I am using -mixed- to model predictors of date of hatching date for an aquatic bird in a long-term study. Females who lay the eggs are sampled in the dataset across years, so I have included female identity as a random effect. My command is:
mixed hatchasdoyfixed iceout lnlksize blackfly FTERR15vsrest FTERR15vsrestSQ if Fembargo>5 || female:, nolog
. estat ic
hatchasdoyfixed is the day of year when hatching occurs; iceout, lnlksize, and blackfly are continuous covariates affecting hatching date.
FTERR15vsrest is the number of years a female has resided on the current territory, with a threshold of 5 years (i.e. 5+ years is coded as "5")
FTERR15vsrestSQ is just the square of FTERR15vsrest.
All is fine so far. Hatching date declines for the first few years on a territory but then increases after 5-10 years on a territory (probably owing to senescence). This makes sense in the system and is similar to what many other birds show.
But when I run a model that is similar, except that I have substituted the two predictors FTERR12vsrest and FTERR12vsrestSQ (threshold set at two years, not five) for FTERR15vsrest and FTERR15vsrestSQ, I get this result:
I am puzzled by this result -- and have stalled on my analysis -- because I am using AIC to try to find the best predictors from among a set of plausible ones. FTERR12vsrest and FTERR15vsrest are equally plausible.
Thanks for any insights you can provide me. I am sorry if this is more of a statistics question than a STATA question.
Walter Piper
I am using -mixed- to model predictors of date of hatching date for an aquatic bird in a long-term study. Females who lay the eggs are sampled in the dataset across years, so I have included female identity as a random effect. My command is:
mixed hatchasdoyfixed iceout lnlksize blackfly FTERR15vsrest FTERR15vsrestSQ if Fembargo>5 || female:, nolog
Mixed-effects ML regression Number of obs = 864
Group variable: female Number of groups = 248
Obs per group:
min = 1
avg = 3.5
max = 16
Wald chi2(5) = 182.53
Log likelihood = -3226.5848 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------
hatchasdoyfixed | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------+----------------------------------------------------------------
iceout | .2386255 .0260036 9.18 0.000 .1876594 .2895917
lnlksize | -1.294213 .4755676 -2.72 0.007 -2.226309 -.3621178
blackfly | 13.28497 2.271379 5.85 0.000 8.833144 17.73679
FTERR15vsrest | -3.578299 .8136812 -4.40 0.000 -5.173085 -1.983513
FTERR15vsrestSQ | .504285 .1464524 3.44 0.001 .2172435 .7913265
_cons | 172.937 2.073477 83.40 0.000 168.8731 177.001
---------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
female: Identity |
var(_cons) | 20.34735 4.554122 13.12179 31.55171
-----------------------------+------------------------------------------------
var(Residual) | 87.82712 4.882628 78.76028 97.93773
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 42.05 Prob >= chibar2 = 0.0000
Group variable: female Number of groups = 248
Obs per group:
min = 1
avg = 3.5
max = 16
Wald chi2(5) = 182.53
Log likelihood = -3226.5848 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------
hatchasdoyfixed | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------+----------------------------------------------------------------
iceout | .2386255 .0260036 9.18 0.000 .1876594 .2895917
lnlksize | -1.294213 .4755676 -2.72 0.007 -2.226309 -.3621178
blackfly | 13.28497 2.271379 5.85 0.000 8.833144 17.73679
FTERR15vsrest | -3.578299 .8136812 -4.40 0.000 -5.173085 -1.983513
FTERR15vsrestSQ | .504285 .1464524 3.44 0.001 .2172435 .7913265
_cons | 172.937 2.073477 83.40 0.000 168.8731 177.001
---------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
female: Identity |
var(_cons) | 20.34735 4.554122 13.12179 31.55171
-----------------------------+------------------------------------------------
var(Residual) | 87.82712 4.882628 78.76028 97.93773
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 42.05 Prob >= chibar2 = 0.0000
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | N ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 864 . -3226.585 8 6469.17 6507.262
-----------------------------------------------------------------------------
Model | N ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 864 . -3226.585 8 6469.17 6507.262
hatchasdoyfixed is the day of year when hatching occurs; iceout, lnlksize, and blackfly are continuous covariates affecting hatching date.
FTERR15vsrest is the number of years a female has resided on the current territory, with a threshold of 5 years (i.e. 5+ years is coded as "5")
FTERR15vsrestSQ is just the square of FTERR15vsrest.
All is fine so far. Hatching date declines for the first few years on a territory but then increases after 5-10 years on a territory (probably owing to senescence). This makes sense in the system and is similar to what many other birds show.
But when I run a model that is similar, except that I have substituted the two predictors FTERR12vsrest and FTERR12vsrestSQ (threshold set at two years, not five) for FTERR15vsrest and FTERR15vsrestSQ, I get this result:
mixed hatchasdoyfixed iceout lnlksize blackfly FTERR12vsrest FTERR12vsrestSQ if Fembargo>5 || female:, nolog
Mixed-effects ML regression Number of obs = 864
Group variable: female Number of groups = 248
Obs per group:
min = 1
avg = 3.5
max = 16
Wald chi2(5) = 184.19
Log likelihood = -3225.8934 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------
hatchasdoyfixed | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------+----------------------------------------------------------------
iceout | .2388632 .0259866 9.19 0.000 .1879304 .2897961
lnlksize | -1.316448 .4744776 -2.77 0.006 -2.246407 -.3864886
blackfly | 13.36963 2.272566 5.88 0.000 8.915487 17.82378
FTERR12vsrest | -2.643817 2.238305 -1.18 0.238 -7.030815 1.743182
FTERR12vsrestSQ | -.0655009 1.019983 -0.06 0.949 -2.064631 1.933629
_cons | 172.9939 2.116142 81.75 0.000 168.8463 177.1415
---------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
female: Identity |
var(_cons) | 20.36309 4.54509 13.14781 31.53798
-----------------------------+------------------------------------------------
var(Residual) | 87.66014 4.871796 78.61326 97.74814
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 42.41 Prob >= chibar2 = 0.0000
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | N ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 864 . -3225.893 8 6467.787 6505.879
In short, AIC has decreased slightly when I swapped out two "good" predictors for two "poor" ones. Group variable: female Number of groups = 248
Obs per group:
min = 1
avg = 3.5
max = 16
Wald chi2(5) = 184.19
Log likelihood = -3225.8934 Prob > chi2 = 0.0000
---------------------------------------------------------------------------------
hatchasdoyfixed | Coefficient Std. err. z P>|z| [95% conf. interval]
----------------+----------------------------------------------------------------
iceout | .2388632 .0259866 9.19 0.000 .1879304 .2897961
lnlksize | -1.316448 .4744776 -2.77 0.006 -2.246407 -.3864886
blackfly | 13.36963 2.272566 5.88 0.000 8.915487 17.82378
FTERR12vsrest | -2.643817 2.238305 -1.18 0.238 -7.030815 1.743182
FTERR12vsrestSQ | -.0655009 1.019983 -0.06 0.949 -2.064631 1.933629
_cons | 172.9939 2.116142 81.75 0.000 168.8463 177.1415
---------------------------------------------------------------------------------
------------------------------------------------------------------------------
Random-effects parameters | Estimate Std. err. [95% conf. interval]
-----------------------------+------------------------------------------------
female: Identity |
var(_cons) | 20.36309 4.54509 13.14781 31.53798
-----------------------------+------------------------------------------------
var(Residual) | 87.66014 4.871796 78.61326 97.74814
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 42.41 Prob >= chibar2 = 0.0000
. estat ic
Akaike's information criterion and Bayesian information criterion
-----------------------------------------------------------------------------
Model | N ll(null) ll(model) df AIC BIC
-------------+---------------------------------------------------------------
. | 864 . -3225.893 8 6467.787 6505.879
I am puzzled by this result -- and have stalled on my analysis -- because I am using AIC to try to find the best predictors from among a set of plausible ones. FTERR12vsrest and FTERR15vsrest are equally plausible.
Thanks for any insights you can provide me. I am sorry if this is more of a statistics question than a STATA question.
Walter Piper
Comment