Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Decrease the number of zeros in the coefficients

    Hello everyone

    I am working on a paper. I am asking for your advice on how to re-scale the data and decrease the number of zeros in the coefficients.
    Attached is the regression table

    Table 2: Cocoa Agricultural Productivity
    Dependent Variable: [lnYield (ton/he)]
    - - - OLS, Municipality and Year Fixed Effect - - -
    Variables (1) (2) (3)
    Ln(Credit for Investment) 0.00452*** 0.00164** 0.00137*
    (0.000546) (0.000618) (0.000623)
    Ln(Fiscal Revenue) -0.00847* 0.00206 -0.00774
    (0.00343) (0.00744) (0.00868)
    Land use -0.000196 -0.00758 -0.00637
    (0.00271) (0.00834) (0.00831)
    Labor 0.0139*** 0.0357*** 0.0339***
    (0.00173) (0.00525) (0.00827)
    Aqueduct Coverage -0.000514** 0.0000916 0.000176
    (0.000163) (0.000161) (0.000159)
    Energy Coverage 0.00186*** 0.000800* 0.000664
    (0.000279) (0.000362) (0.000367)
    Constant -1.596*** -2.918*** -2.726***
    (0.0957) (0.294) (0.514)
    Municipality FE No Yes Yes
    Year FE No No Yes
    N 6424 6424 6424
    R-sq 0.052 0.616 0.623
    OLS Robust Standard errors in parentheses
    *** p<0.01, ** p<0.05, * p<0.1


    Thanks!




  • #2
    This forum is for learning how to use the forum software. Next time, post your question on the General Forum. You need to divide your variables by a positive constant. For logged variables, you may want to do this before taking logs. Here is an example:

    Code:
    sysuse auto, clear
    regress mpg price weight disp
    foreach var in price weight displacement{
        replace `var'= `var'/10000
    }
    regress mpg price weight disp
    Res.:

    Code:
    . regress mpg price weight disp
    
          Source |       SS           df       MS      Number of obs   =        74
    -------------+----------------------------------   F(3, 70)        =     44.23
           Model |  1599.61376         3  533.204588   Prob > F        =    0.0000
        Residual |  843.845694        70  12.0549385   R-squared       =    0.6547
    -------------+----------------------------------   Adj R-squared   =    0.6399
           Total |  2443.45946        73  33.4720474   Root MSE        =     3.472
    
    ------------------------------------------------------------------------------
             mpg |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           price |  -.0000966   .0001636    -0.59   0.557     -.000423    .0002297
          weight |  -.0063909    .001209    -5.29   0.000    -.0088022   -.0039796
    displacement |   .0054824    .009921     0.55   0.582    -.0143044    .0252693
           _cons |   40.10848   2.029845    19.76   0.000     36.06008    44.15687
    ------------------------------------------------------------------------------
    
    .
    . foreach var in price weight displacement{
      2.
    .     replace `var'= `var'/10000
      3.
    . }
    variable price was int now float
    (74 real changes made)
    variable weight was int now float
    (74 real changes made)
    variable displacement was int now float
    (74 real changes made)
    
    .
    . regress mpg price weight disp
    
          Source |       SS           df       MS      Number of obs   =        74
    -------------+----------------------------------   F(3, 70)        =     44.23
           Model |  1599.61377         3  533.204591   Prob > F        =    0.0000
        Residual |  843.845688        70  12.0549384   R-squared       =    0.6547
    -------------+----------------------------------   Adj R-squared   =    0.6399
           Total |  2443.45946        73  33.4720474   Root MSE        =     3.472
    
    ------------------------------------------------------------------------------
             mpg |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
           price |  -.9662414   1.636186    -0.59   0.557    -4.229512     2.29703
          weight |  -63.90924   12.09013    -5.29   0.000    -88.02225   -39.79623
    displacement |   54.82433   99.21035     0.55   0.582    -143.0445    252.6931
           _cons |   40.10848   2.029845    19.76   0.000     36.06008    44.15687
    ------------------------------------------------------------------------------
    
    .

    Comment

    Working...
    X