Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • Is a spatial errorlag co-efficient greater than 1 problematic?

    Hello all,

    I am using Stata 15.1

    I have created a Spectrally Normalized Spatially Weighted Inverse-distance Cross-Sectional Matrix - using proprietary distance data - by means of spmatrix fromdata, i.e. not using methods employing a shapefile or co-ordinate variables.

    The Matrix is 66x66, non-symmetric, and hollow (diagonal elements = 0).

    spregress run on this Matrix with a gs2sls (generalized spatial two-stage least-squares) estimate produces an errorlag co-efficient greater than 1. [1.586804]

    As discussed on page 147 of the Stata Spatial Autoregressive Models Ref Manual the errorlag co-efficient (rho [hat] )

    should be between −1 and 1 unless the solution is explosive.
    To note, the Stata example for Spatial autoregressive models provided also appears to have an errorlag co-efficient greater than 1 [3.247298]

    I have two questions please.
    1. Given the steps taken below, is an errorlag co-efficient [rho hat] greater than 1 problematic?*
    2. If so, is there a remedy for this?
    *By which I mean the results cannot be used to reject H0

    Happy to PM matrix data/provide clarity. Regards,

    Harry

    PS Following spregress I have run estat impact for completeness.
    PPS dataex linesize limit exceeded by matrix

    Code:
     
    . use "C:\Users\Atlan\OneDrive\PC\UCD\Matrix\STATA\2020 08 19 distance matrix.dta"
    
    . spmatrix fromdata WmeM = NP_22050-NP_18454, normalize(spectral) idistance replace
    
    . spmatrix export WmeM using WmeM.txt
      (matrix WmeM saved in file WmeM.txt)
    
    . save    "C:\Users\Atlan\OneDrive\PC\UCD\Matrix\STATA\2020 08 19 distance matrix.dta", replace
    file C:\Users\Atlan\OneDrive\PC\UCD\Matrix\STATA\2020 08 19 distance matrix.dta saved
    
    . clear
    
    . use     "C:\Users\Atlan\OneDrive\PC\UCD\Matrix\STATA\2019 12 27 Cluster Analysis_5.dta"
    
    . regress LE_PET_DIE_1 SUMBC660sSQ
    
          Source |       SS           df       MS      Number of obs   =        66
    -------------+----------------------------------   F(1, 64)        =     28.13
           Model |  .005390905         1  .005390905   Prob > F        =    0.0000
        Residual |  .012265551        64  .000191649   R-squared       =    0.3053
    -------------+----------------------------------   Adj R-squared   =    0.2945
           Total |  .017656456        65  .000271638   Root MSE        =    .01384
    
    ------------------------------------------------------------------------------
    LE_PET_DIE_1 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
     SUMBC660sSQ |  -.0001403   .0000265    -5.30   0.000    -.0001932   -.0000875
           _cons |   .0746009   .0035903    20.78   0.000     .0674285    .0817732
    ------------------------------------------------------------------------------
    
    . spset catnumber
      Sp dataset 2019 12 27 Cluster Analysis_5.dta
                    data:  cross sectional
         spatial-unit id:  _ID (equal to catnumber)
             coordinates:  none
        linked shapefile:  none
    
    . estat moran, errorlag(WmeM)
    
    Moran test for spatial dependence
             Ho: error is i.i.d. 
             Errorlags:  WmeM
    
             chi2(1)      =    10.22
             Prob > chi2  =   0.0014
    
    . spregress LE_PET_DIE_1 SUMBC660sSQ, gs2sls errorlag(WmeM) 
      (66 observations)
      (66 observations (places) used)
      (weighting matrix defines 66 places)
    
    Estimating rho using 2SLS residuals: 
    
    initial:       GMM criterion =  6.965e-10
    alternative:   GMM criterion =  1.179e-10
    rescale:       GMM criterion =  3.067e-12
    Iteration 0:   GMM criterion =  3.067e-12  
    Iteration 1:   GMM criterion =  2.534e-13  
    
    Estimating rho using GS2SLS residuals: 
    
    Iteration 0:   GMM criterion =  .01728762  
    Iteration 1:   GMM criterion =  .01186374  
    Iteration 2:   GMM criterion =  .01175648  
    Iteration 3:   GMM criterion =  .01175648  
    
    Spatial autoregressive model                    Number of obs     =         66
    GS2SLS estimates                                Wald chi2(1)      =      10.00
                                                    Prob > chi2       =     0.0016
                                                    Pseudo R2         =     0.3053
    
    --------------------------------------------------------------------------------
      LE_PET_DIE_1 |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    ---------------+----------------------------------------------------------------
    LE_PET_DIE_1   |
       SUMBC660sSQ |   -.000081   .0000256    -3.16   0.002    -.0001312   -.0000308
             _cons |   .0679234   .0042821    15.86   0.000     .0595307    .0763162
    ---------------+----------------------------------------------------------------
    WmeM           |
    e.LE_PET_DIE_1 |   1.586804    .554908     2.86   0.004      .499204    2.674403
    --------------------------------------------------------------------------------
    Wald test of spatial terms:          chi2(1) = 8.18       Prob > chi2 = 0.0042
    
    . estat impact 
    
    progress   :100% 
    
    Average impacts                                 Number of obs     =         66
    
    ------------------------------------------------------------------------------
                 |            Delta-Method
                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    direct       |
     SUMBC660sSQ |   -.000081   .0000256    -3.16   0.002    -.0001312   -.0000308
    -------------+----------------------------------------------------------------
    indirect     |
     SUMBC660sSQ |          0  (omitted)
    -------------+----------------------------------------------------------------
    total        |
     SUMBC660sSQ |   -.000081   .0000256    -3.16   0.002    -.0001312   -.0000308
    ------------------------------------------------------------------------------
    
    . 
    end of do-file
Working...
X