Announcement

Collapse
No announcement yet.
X
  • Filter
  • Time
  • Show
Clear All
new posts

  • TEST post Test post Using margins after churdle estimation allowing for heteroskedasticity

    This is my first post, so im testing here before posting in General forum!!

    In STATA 14 we estimate the following double hurdle model

    Code:
    churdle lin y self turen age,select(self turen female) ll(0) 
     
    margins, dydx(self turen age female)  predict(ystar(0,.))
    margins, dydx(self turen age) predict(e(0,.))
    Which gives nice and interpretable results.

    However we would like to allow the variance to have heteroscedasticity, and specify the model to allow for that as:

    Code:
    churdle lin y self turen age,select(self turen female) het(self turen age) ll(0) 
     
    margins, dydx(self turen age female)  predict(ystar(0,.))
    margins, dydx(self turen age) predict(e(0,.))


    The model converges without problems, but the second hurdle parameter coefficients changes tremendously, especially when we calculate the marginal effects. Looking at the parameter for self the parameter value increases from 0.23 to -5.81 and the marginal effects (ystar) change from -3.01 to 18.03 and unconditional effects from 0.129 (strongly insignificant) to 57.8 and strongly significant. What is going on??



    Our output without het():

    Code:
    ------------------------------------------------------------------------------
               y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    y            |
            self |   .2306694   2.871907     0.08   0.936    -5.398164    5.859503
         turen_d |   106.8683   139.0496     0.77   0.442    -165.6638    379.4005
             age |  -4.750032   3.039761    -1.56   0.118    -10.70785     1.20779
           _cons |   884.4703   391.2746     2.26   0.024     117.5863    1651.354
    -------------+----------------------------------------------------------------
    selection_ll |
            self |  -.0079584   .0021007    -3.79   0.000    -.0120756   -.0038411
         turen_d |  -.0192124   .1045648    -0.18   0.854    -.2241556    .1857307
          female |   .0836791   .0652191     1.28   0.199     -.044148    .2115062
           _cons |   .8016719   .2816518     2.85   0.004     .2496446    1.353699
    -------------+----------------------------------------------------------------
    lnsigma      |
           _cons |   6.757771   .0462606   146.08   0.000     6.667102     6.84844
    -------------+----------------------------------------------------------------
          /sigma |   860.7213   39.81747                      786.1139    942.4094
    ------------------------------------------------------------------------------

    And with the marginal effects using margins for ystar and e (we do not show the partial effects for the probability as that is unchanged between the two estimations.


    Code:
    Expression   : Mean estimates of y*= max{a, min(y,b)}, predict(ystar(0,.))
    dy/dx w.r.t. : self turen_d age female
    
    ------------------------------------------------------------------------------
                 |            Delta-method
                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
            self |  -3.011951    1.06357    -2.83   0.005    -5.096509   -.9273921
         turen_d |   18.22074   52.31436     0.35   0.728    -84.31352     120.755
             age |  -1.138989   .7240076    -1.57   0.116    -2.558018    .2800397
          female |   32.25111   25.15053     1.28   0.200    -17.04303    81.54524
    ------------------------------------------------------------------------------

    Code:
    Expression   : Conditional mean estimate of dependent variable in (a,b), predict(e(0,.))
    dy/dx w.r.t. : self turen_d age
    
    ------------------------------------------------------------------------------
                 |            Delta-method
                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
            self |   .1293251    1.61034     0.08   0.936    -3.026883    3.285533
         turen_d |   59.91585   77.94611     0.77   0.442    -92.85571    212.6874
             age |   -2.66311   1.691031    -1.57   0.115    -5.977471    .6512505
    ------------------------------------------------------------------------------

    And with heteroscedasticity specified


    Code:
    ------------------------------------------------------------------------------
               y |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
    y            |
            self |  -5.816994   1.497549    -3.88   0.000    -8.752137   -2.881851
         turen_d |   679.1555   105.7595     6.42   0.000     471.8708    886.4402
             age |  -.3096104   2.079937    -0.15   0.882    -4.386213    3.766992
           _cons |   1370.061   120.9306    11.33   0.000     1133.042    1607.081
    -------------+----------------------------------------------------------------
    selection_ll |
            self |  -.0079584   .0021007    -3.79   0.000    -.0120756   -.0038411
         turen_d |  -.0192124   .1045648    -0.18   0.854    -.2241556    .1857307
          female |   .0836791   .0652191     1.28   0.199     -.044148    .2115062
           _cons |   .8016719   .2816518     2.85   0.004     .2496446    1.353699
    -------------+----------------------------------------------------------------
    lnsigma      |
            self |   .0494853   .0009241    53.55   0.000      .047674    .0512965
         turen_d |   .4566014   .1064034     4.29   0.000     .2480547    .6651482
             age |   .0108982   .0021244     5.13   0.000     .0067345    .0150619
    ------------------------------------------------------------------------------
    Code:
    Expression   : Mean estimates of y*= max{a, min(y,b)}, predict(ystar(0,.))
    dy/dx w.r.t. : self turen_d age female
    
    ------------------------------------------------------------------------------
                 |            Delta-method
                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
            self |   18.03894   2.089843     8.63   0.000     13.94292    22.13496
         turen_d |   369.8748   82.58536     4.48   0.000     208.0105    531.7391
             age |   5.273477   1.044157     5.05   0.000     3.226965    7.319988
          female |   51.33115    39.9712     1.28   0.199    -27.01096    129.6733
    ------------------------------------------------------------------------------

    Code:
     
    Expression   : Conditional mean estimate of dependent variable in (a,b), predict(e(0,.))
    dy/dx w.r.t. : self turen_d age
    
    ------------------------------------------------------------------------------
                 |            Delta-method
                 |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
    -------------+----------------------------------------------------------------
            self |   57.82585   2.816197    20.53   0.000      52.3062    63.34549
         turen_d |   922.2891   125.2199     7.37   0.000     676.8626    1167.716
             age |    13.2504   2.562389     5.17   0.000     8.228212    18.27259
    ------------------------------------------------------------------------------


Working...
X